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approach has been successfully used for the case in which concurrency is hidden ¥oim
record management and application programs. Thheuobmmmu
m-wwmwmmmm

This framework is suitable for uniprocessor, mlﬂpm umm In this
framework there are two subsystems, a concurrency conirol and a giobal memory. maneger,
that are responsible for controlling access t0 all shared data objects. The concurrency
control and giobal memory manager are application-independent, and are esseniielly
autonomous. They may be functionally distributed between two processors, or distributed
among many processors by partitioning the set of shared data objects. Since access to ail
shared data objects is controlled by these two subsystems, all other subsystems may be
distributed in any fashion desired. In particular, in computer networks all other subsystems
may be replicated.

A general peradigm for concurrency control is developed in which transactions are not
required to follow any given protocol. instead, possible confiicts are detected, and a policy
determines how the possible conflict is handied. Thus, the two-phase locking protocol is just
one of many possible policies; the optimistic method for concurrency control can be
implemented by another policy. The paradigm is designed so that regerdiess of the choices
made by the policy the database remains consistent. Policies may be defined at design-time,
or they may be defined by modules that are executed at run-time. In the latter case, & s
possidle to dynamically change policies, even while the system is in use. This is shown ©
be highly convenient for policy development and experimentasion.

The global memory manager designs support multi-version cbjects. which are used % sohve
the granularity problem for queries (read-only transactions) by making Rt unnecsssery for
queries 10 interact with the concurrency control. Some properties of the global memary
maneger designs are that new. versions of objects may be writen asynchwvonowsly by
concurrent transactions, and that old versions of. cbjects may be garbage-collecied at the
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eartisst point at which it can be guarantead. thet no future transaction or query will access
that version. A

# compiete transsction processing system was developed for Om*, &
distributed multi-microprocessor. This system used & concuency contvol in which -alif
functions required by the paradigm were availsble, and the concumency control used-a
policy module impiementing & number of policies, any of which could be chosen et run-tima.
The record manager of this system supported a simple relational view of the datebass, with
one or more B-tree indexes for each reiation. The record manager was replicated, and
copies of versions of shared data objects were cached. The ussfuiness of the design
framework was illustrated by the fact that the record manager, the most complex: subsystem,
was earlier developed on a completely different centralized system, andnqummm
modifications to be used in this system.

Experiments were performed with varying numbers of processors, and with various policies.
For this system, the effect of waiting due to locking proved to be negligible, and 8o locking
policies generally gave the best performance. This resuit may not apply to other systems,
though: a3 an example of one of many possibie differences, in this system individual
processors were not muitiprogrammed. However, using & concurrency control policy
module, it is sasy to investigate many different concurrency controis on any system, s
demonstrated by thess experiments.
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1. introduction

In this introduction the nature of transaction processing will be examined, followed by an
identification of some of the problems unique to transaction processing. Then, sfter listing
the problems of concemn here, this work and its relationship to previous work will be

summarized. .
1.1. What is Transaction Processing?

The nature of transaction processing systems can best be illustrated by considering a
number of examples. Some examples of commercial transaction processing systems inciude
banking, airline reservation, and inventory control systems; some office automation examples
include memo and appointment scheduling systems; an example of soltware engineering
support is a documentation system where the documentation of modules is added or edited
as the modules are developed; finally, some general information system exampies include
bulietin boards, shared bibliographies, and personnel directories.

in all of these exampies there is an underlying database that is shared by a number of users.
Thus, the problem of transaction processing system design is an extension of the more
general problem of database design, and all problems of database design are also problems
in transaction processing system design. The distinguishing property of transaction
processing systems is that any of the users sharing the database can in principie modily the
database.

Since the database is shared, users must be restricted in the manner in which they are
allowed to modify the database -- otherwise the database coukl easily become intemally
inconsistent (e.g., damaged access structures) and unusable, or externally inconsistent (e.g.,
containing information not in agreement with reality) and unreliable.

A formal definition of internal consistency is implementation dependent. For example, ¥ the
database is structured as a tree, then the property that the graph formed by the nodes and
pointers in this structure actually be a tree is an internal consistency property. in general,
internal consistency properties are properties that can be determined to hold or not by
examination only of the information in the database. The problem of pressrving internal
consistency leads naturally to the notion of a transection: civenafomnlddlﬂﬂmofﬂn
shared database and its internal consistency, lWMMWyWQ:
wmmmmmmmawmnmmum
consigtent before the transaction is executed, then the databese is internally consistent alter
the transaction has completed. By restricting users to modilying the database using only
momm“mwmmmwmmmmu
mmmmaMMmhm*Mn»‘-.n
mmammuwmnuamm-
transaction, some exampies of transections ane:




hum m«mmw«m-nmm
sleiines - ﬁw&mtm :
inventory control -- wammmwmwaamm‘

memo system - mnmwamdmumwmamom: ' i
coliection of memos; ‘I
sppointment scheduling -- wmmmamwamdmmam
time period, cancel a previously scheduled mesting; '
documentation - ndd.mnrdduldmuﬁonforamuw«r
ocbeolete module; v '
wm‘-mmwmam,Wwww-
shared bibliographies -- add or edit & new or incorract description of a bibliographic
personnel directories -- add, edit, or delete information for a given person.
AWMWNWMG&MMNW&W:M
Some examples of queries are: . N

1 banking -- mmwmmmmumdmm
i an account statement (history): :

'g airfines - mmwummmammmmmw
‘ ssquences of fights with given departure and destinaion points;
inventory control -- ﬁmmwmﬂmdammmmwm
of all stock;
mm--wgmmmmmnmm‘
appoinimant scheduling -- generals an appointment calender;

documentation -- mmmmm-mm.mamm e
nmmm mmmhhmunnam

bulletin boartss -- mamwawm;mm«mum
mm mumv:mmuucmm
personnel directories -- mm'smammwwmm
a given job classification in a given location. \ o
’ . ..IJ.._H.

Smmmadmmmmmmmm.
MhmmmMMMMMMbm%h
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oach case, & transection correspends 10 an event that: has teken-pises; Wikl tahe-ciepe;. or
could také place n the “real world," and a query corresponds to outside observetion of the
*rmal world,” as Hustrated in Figure 1.1. Note that in all of the: abave informal. descrigtions
of transactions, transactions: seem smail in erme of the size of the part of the dutabage thet
is accessed by the transaction. This is probably because the transactions model events in
the “resl world,” and in the real world, there is a locality principle: cbjects cannot in
general affect each other unless they are "ciose”, and few objeets .can in geseral be
simuitaneously “close”. In any case, in most transaction processing systems all transactions
seem to be small in this sense. However, it is easy to imagine useful querias of all sizes, as
should be clear from the above exampies. These general properties of queries and

transactions have impiications for transaction ' processing system design, and will: be
discussed iater. '
TRANSACTION
PROCESSING
"REAL WORLD" SYSTEM
- ENTITIES [ RECORDS |
I . I .
| = et | mode N
event . :% transaction
. . . . . b
| o _
' ] . o | s L .
L- [ ] [ ] —J ® ]
OBSERVER QUERY

Figure 1.1. Transaction Processing




4 DESIGN OF CONCURRENCY CONTROLS FOR TRANSACTION PROCESSING SYSTEMS

The problem of guaranteeing external consistency is usually approached by protection
mechanisms -- the goal is to allow each user to modify only those parts of the database for
which that user can be trusted or assumed, first, to know the true state of the corresponding
part of the "real worid”, and second, t0 enter this information correctly. This is the
transaction side of protection; there is also a query side of protection, where the goal is to
allow each user to access in a query only those parts of the database for which that user
has a right to examine.

1.2. Probliems of Transaction Processing'

ignoring for the moment problems of database design, those problems introduced by
transaction processing will now be considered. Two problems of transaction processing --
increasing confidence that a procedure is in fact a transaction, and protection -- have
already been mentioned above. However, these problems are not unique to transaction
processing: the first problem can be seen as an instance of the more general problem of
program verification and testing, and the problem of designing protection mechanisms -- a
problem for any system with shared resources -- does not seem significantly changed by the
nature of transaction processing (however, protection policies may be more complex, as in
statistical databases).

Anocther problem is that of recovery. The database can become internally inconsistent due
to hardware failures or software errors; it can also become externally inconsistent due to
human emrors. In such cases it is desirable to restore the database 1o some earfier state that
ia believed to be consistent, relying on the hopefully increasing reliability of the lower levels
of memory hierarchies for recovery of the previous state. . However, it is also desirable 10
undo as little as possible, that is to restore the database to the most recent such state. This
latter goal can be very important in some transaction processing applications (e.g., for
economic reasons), thus in a sense making the problem unique to transaction processing,
even though it is a desirable goal for any system.

The final problem is that of concurrency: even if transactions individually preserve internal
consistency, concurrent execution of transactions may cause internal consistency to be lost,
as shown by the following simple example.

The database consists of four integer variables X, Y, Z, and W. Furthermore,
internal consistency requires that X+ Y+Z+W s 4. fcurretly X = 1,Y « 3, Z =
W = 0, consider the following interleaved execution of two transactions A and 8 (Z
and W are unused here, but will be referred to below). Note that temp is a local
variable for each transaction.




Transaction A Transaction 8 temp,, tempy, X, V¥, Z, W

move 1 from XtoY move 1fromY 1o X - 1,3 0,0
1)) temp := X 1, - 1,30 0
@ tomp :m Y 1,3 1,300
3) ’ Y := temp-1 1,8, 1,2 0,0
(4) temp = X 1.1, 1, 2,0, 0
(5) X := temp-1 1, 1,0, 2,0, 0
6) temp := Y 21,0 200
(4] Y:= temp+1 21,0 3,00
@) X:n temp+1 '2,1,2300

Clearly, each transaction individually preserves X+Y+Z+W = 4, but the result is that’
X+Y+Z+W = 5. A transaction processing subsystem that prevents or resolves interactions

such as this will be called a concurrency control.

At first this problem may not seem significantly different from the general synchronization
problem (see [Andler 79) for a survey). However, there is a fundamental difference: in
general, the objects that will be accessed by a transaction cannot be determined in advance
of the actual accesses. This is in contrast 0 an operating system, say, where the shared
data structures accessed by a particuiar module are usually determined at design time. The
problem is more closely related to that of allocation of shared resources, with no prior
claiming of resouces. This similarity has led historically to locking-style concurrency
controls, that is, concurrency controls in which access to an object is in some cases
restricted to at most one transaction. However, there are many more concurrency controls
than locking concurrency controis (for example, see Chapter 5). The difference is that
concurrent access to an object need not be disastrous, as it usuaily would be if it were 10 a
tape drive, for example. '
The reason that accesses cannot be predicted in advance is that the actions taken by a
transaction are in general dependent on the data read. This can be true at all ieveis of the
system. For example, at the conceptual level (see Chapter 2), it is easy to imagine
transactions of the form: “for all X, Y satisfying certain constraints, it X < Y then update X,
otherwise update Y". o

An example st the physical acosss level is the use of dynamic index structures (see
Appendix 1). In such cases, the set of abjects that will be accessed by a transaction, other
than the root of the index, ls completely unknown prior t0 execution (see Figure 1.3).
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Figure 1.2. Access Path Determined at Execution-Time

Since accesses cannot in general be predicted in advance. it wil be necessary to abort
transactions (i.e., undo all modifications to the shared database). Consider the exampile of
transactions A and B above. Until step (4) is reached, it just as well could have been the
case that A would access X and Z only and that 8 would access ¥ and W only. Howéver,
once step (4) is reached, one of the two transactions will eventually have to be aborted.
Also, it is desirable to allow users or application programs to abort transactions.

These, then, are some of the probiems introduced by transaction processing. However,
solutions to these problems must take into account the underlying database system. Some
of the inadequacies in existing database systems resuit from needs to process (1) mors data
for (2) more users, (3) more quickly, (4) more reliably, and (5) less expensively. One current
approach to these inadequacies relies on the rapidly decreasing cost of processing power.
Apparently, though, the cost of large, reliable memory and various special devices (such ss
high-quality printers) is not decreasing nearly 30 rapidly. Thess economic considerations
have led to architectures such as that of Figure 1.3, in which (cheap) processing power is

The architecture of Figure 1.3 seems idesily suited for esssntially non-shared; personal
applications; the problem introduced by transaction processing in this case ' %0 wee this
architecture eflectively in a highly-shared application. For exampie, solving the cancurrency
be unacceptable since only the central computer would be utiized t0 any degres at ol (e
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Figure 1.3. Personal Computer Network with Shared Expensive Devices

is often true for uniprocessor systems as well, where there may actually be paraliel
processing due to multiple 170 devices).

1.3. Problems Considered Here

The major problem.considered here is that of concurrency control design, subject to two
constraints. The first constraint is that the concurmrency control should be as application
independent as possible. The advantages of this are overwheiming, and are more fully
diecussed in Chapter 2.

The second constraint is one of efficiency. The architecture of Figure 1.3 is just an example;
the concurrency control should apply to other architectures as well. A problem is that &
pesticular concurrency control could be efficient for some architectures and not for othera.
Even given the architecture, there are many varisbies, such as network and memory
bandwidths, probability of transaction conflict, average transaction and query size, stic. The
sscond constraint, then, is that the concumrency control should be genersl: sl CORCUTENCY
controls, subject to certain. explick design criteria (such as application independence).
should be realizable -- there should be no hiken design criteria. This results s & design
that can be. tallored for & specific environment by fixing the remaining design criteria.
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Another probiem considered here is that of query size. As notéd above, queries can be
-arbitrarily large. But queries do not modify the database; it seems that it should be possible
to run queries without any concurrency control interaction. In fact this is the case, and
several solutions will be presented, but the solutions rely on multi-version objects. This then
raises the problem of garbage collecting old versions, which is considered here as well.
Multi-version objects are also of use in distributed systems for determining when cached
copies of shared objects are "out-of-date”, and they ame generally useful for recovery
purposes. '

A related problem is one of transaction size. Even if most transactions are small, there may
be some occasional large transactions (e.g., & transaction that physically reorganizes the
database). Furthermore, poor database design can result in conceptually small transactions
physically accessing large parts of the database. This is known as the granufarity problem,
and can be solved by hierarchical concurrency controls, such as that discussed in {Gray 78].
Another approach is to attempt to design the database so that large transactions are rare.
This is the approach assumed here, and for this reason, earlier work related to one aspect of
this problem -- design of dynamic index structures -- is presented in Appendix |. This is also
a problem in design at higher levels: an example often used to illustrate a large transaction
is one that raises all salaries in an empioyee file by 5%, say -- however, if salaries were not
stored in absolute terms, but instead were stored as relative values, with a single data item
giving the conversion, this apparently iarge transaction becomes very small. Furthermore,
this design can be generalized if necessary to contain a number of conversion factors for
different classes of employees. This exampie is mentioned only to show that the necessity
for large transactions is not always clear. (n any case, even if there are large transactions,
~ in most applications they will be rare, and it is trivial to generalize non-hierarchical
'f concurrency controls to simple hierarchical concurrency controis -- for example, an option
i can be added so that transactions can request that the entire database be locked. Finalty,
"the effective use of hierarchical concurrency controls requires advance knowiedge of the
behavior of some transactions, contrary to the first constraint above. For thess reasons
hierarchical concurrency controis are not considered here.

1.4. Summary of this Work

: The problems of transaction processing considered here have been described above. A goel
‘ of this thesis is to soive these problems in such a fashion that the designs will be usable in a
‘ wide variety of applications and systems. This problem is made more difficuk by the fact that
an initislly acceptable design could iater prove to be unacceptable if the design assumptions
are violated. Furthermore, this difficulty is becoming ever larger as the varisties and uses of
multiprocessor and computer network systems grow: due 10 the added complexity of these
systems, first, there are in general many more alternative designs than in & uniprocessor
system, and second, R is much more difficult to predict in advarice how the aiternalives wil
compare.

I .
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%




B et U

INTRODUCTION

Une well-known approach to this problem is information-hiding -- by ieclating design
decisions, and decomposing the system into modules that hide these decisions, 8 much
more flexible design results. In Chapter 2 a design framework for transaction processing
systems is developed based on information-hiding principles. This framework has two
subsystems, a concurrency control and 8 memory manager, that control access to all shared
data cobjects (it is assumed that in distributed systems the memory manager is decompoeed
into 8 number of local memory managers, and a giobal memory manager). Due to thees
subsystems, the framework can be used in a wide variety of systems, some examples of
which are given. The properties the concurrency control must satisfy are also developed in
Chapter 2 using a formal model that has sufficient detail to be immediately applicable in
practice. i

in Chapter 3 an overview of a system using the decomposition of Chapter 2 is presented.
The design decisions that are common to various subsystems are discussed, and the
communication protocols between subsystems are given.

Another approach to the generality problem may be called correctness/pokicy separation.
When designing a module to solve a given probiem, decisions are made at several levels,
ranging from the leve! of fundamental correctness to the ievel of pure policy. For example, in
the case of concurrency control, the module must be designed so that internal inconsistency
of the database is never allowed due to interactions between concurrent transactions -- this
is a fundamental correctness property. It is aiso desirable in some applications that when
transactions conflict, the transaction with the eariier starting time be given priority -- clearly a
poficy. By separating these levels of decisions, and then applying information-hiding, &
general design results. In Chapter 4 a design paradigm for concurrency controls is
.| developed using only those assumptions that are necessary for correctness, application
-;p independence, and practicality. This paradigm has the property that regardiess of the
decisions made by any particular policy, the concurrency control will remain fundamentally
correct.

Policies may be defined statically at design-time, or they may be defined dynamically by
policy modules that are executed at run-time. This latter apporach makes it very easy
experiment with policies, since policies can be changed even while the system i3 in use.
Furthermore, this makes possible a new area of ressarch in concurrency control design: that
of designing concurrency controls that dynamically adapt to system usage 90 &s to optimiae

' performance. ,
The property thet the concuirency control remaing fundamentally correct regardiess of the
policy is also usehsl for designing and maintaining policies, since the policy designer has a
high degree of fresdom. As an usiration of this fresdom, in Chapter 5 a set of basic
policies is developed in which all transactions are treated uniformly without priority: the
result is 330 distinct policies. These policies should be considered only as a beginning in
- the study of policiss, since in practice there are a variety of extensions What will greve
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valuable. Two extensions that are often necessary, deadiock detection and queuing of
requests, are described.

in Chapter 8 several designs for a giobal memory manager are developed. This subsystem
supports multi-version objects, and is used to solve the granularity problem for queries by
making it unnecessary for queries to interact with the concurrency control. A design for

garbage coflection, in which old versions of objects are deleted at the sarliest point at which

it can be guaranteed that they will never again be accessed, is also presented. -

A complete transaction processing system using these designs was developed for the Cm*®
distributed multi-microprocessor. This system used a concurrency control in which all
functions required by the paradigm were available, and the concurrency control used a
policy moduile implementing all basic policies, any of which could be chosen at run-time.
Record managers were replicated, and copies of shared data objects were cached. The
throughput fimitations of this system were investigated, and experiments were performed
using several policies. This system and the experiments are described in Chapter 7. A
generalization of the record manager used in this system is given in Appendix |, and
algorithms developed for the concurrency control are given in Appendix ii. These algorithms

- should apply directly to any transaction processing system using the framework of Chapter 2.

Chapter 8 contains conciusions and & discussion of further research.
1.5. Relationship to Previous Work

in early work on the concurrency control problem, the two-phase locking protocol was
developed ([Eswaran et al 78], [Stearns et al 78]). An implicit assumption behind two-phase
locking is that transactions shouid be controlied 30 as prevent aborts if at all poasible.
Starting from a different premise, that transactions shouid never wait for access to an object,
a radically different optimistic method for concurrency control was developed in [Kung and
Robinson 81]. As an example of the difference between the two approaches, in an optimistic
method deadiock will never occur (since transactions never wait), and so deadiock detection
is unnecessary; on the other hand, using an optimistic method, transactions are much more
iikely t0 be aborted. What the performance differences would be between the two
approaches in any given application was unknown. This suggested the problem of designing
s more general concurrency control that woulkd be capabie of both methods: I an
spplication, experiments could easily be conducted (since both methods are fundamentally
correct in the same sense), and the "best” method could then be used. This problem was
the starting point for this thesis, generalized as follows: the general concurrency comrol
should be capable of any method that satisfied certain explich assumptions. Of these
assumptions, the primary one is that the concurrency control must guaranies serializablity
(see Section 2.5); the remaining assumptions have to do with application ingspendence and
practicality (see Section 4.8). '
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but as discussed above, this seems to be a significant problem only for queries. This
problem is nicely solved using multi-version objects, and is especially appropiate for the
concurrency control design developed here, since seriaiizability is guaranteed in an explicily
known order (see Section 4.5 for a discussion on why this is necessary). The use of mul-
version objects in distributed database systems has previously been investigated in [Reed
78]. The major differences between their use by Reed and their use here are: (1) as used
by Reed, version numbers (pseudo-times in Reed's terminology) are determined during the
course of a transaction, whereas here, sequentially numbering the successful commits of
transactions, the version numbers of the objects written by a transaction are the same as its
commit number; (2) due to the distributed nature of version number assignment, Reed must
largely avoid the garbage collection problem, and queries require concurrency comrol
support, whereas hers version numbers are managed by conceptually centralized entities,
with the results that garbage collection algorithms can be deveioped, and that queries do not
require concurrency control support.

The mapping of the transaction processing system framework of Chapter 2 to s distributed
architecture was influenced by the Medusa operating system (a general-purpose operating
system for Cm* -- see [Ousterhout et al 80]), and by the work of Garcia-Molina (see [Garcia-
Molina 79]). if Medusa were extended to be a database operating system (in the senes of
[Gray 78)), using the mapping of Chapter 2, the global memory manager and concurrency
control would be seen as new utilities, and the local memory manager would be seen as a
new type of kernel. An alternative design would be to include the concurrency control and
global memoary manager as part of a kemnel (a copy of which runs on every node) -- however,
Garcia-Molina sinuiated a variety of centralized and distributed concurrency controls, and
found that the centralized concurrency controis in most cases gave better performance.

Finally, the fiterature for concurrency control has now grown very large, as can be seen from
the recent survey [Bernstein and Goodman 81]. Although much of the previous work on
concurrency control has had a strong influence here, as Bernstein and Goodman conclude,
all the various designs can be seen as combinations and varistions of a few basic
techniques. A major difference of the approach here is that fundamental correctness has
been separated from policy. This approach was motivated by the design of the Hydra
operating system (see [Wult et .al 74]), and by the work of Everhart [Everhart 79).
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2. Design Principles

An overall structure for transaction processing systems will now be described, based on
information-hiding/deta-independence principles. This is followed by a formal development
of the notions of serializability and confiicts, forming a basis for concurrency control design.

2.1. On the Criteria to be Used in Decomposing (Tnmaéuon
Processing) Systems into Modules

The title of this section refers, of course, to the paper by Parnas [Parnas 72). As discussed
there and elsewhere, one approach to system design is information-hiding, i.e., the
decomposition of the system into modules based on difficult or changeabie design decisions,
with each module designed 30 as to hide one decision from the others. This approach has
been demonstrated to have great advantages in decreasing system development and
maintenance time, and in increasing confidence in sysfom correctness. These advantages
are widely believed to outweigh any resultant efficiency digsadvantages, if in fact any such
disadvantages do result.

The information-hiding principle, when applied to database design, has come to be known as
data-independence, which for example Date defines as "the immunity of applications to
change in storage structure and access strategy” {Date 77].

The most far-reaching decisions in database design are thoee of choice of data models.
This is comparable to the more general problem of choice of data structures in
programming. ‘A problem in database design ia that there are many data models that are
variously most appropiate depending on the level at which the design is approached, ranging
from the physical access level, where one would naturally like to think of a "data item” as a
disk block or segment, to the user interface level, where one might think of a "data item” as
a record of some type, or as a collection of records of the same type (e.g., a relation), or
perhaps as some kind of entity suitable for display on a CRT.

This is a common problem of large systems, and can be soived by abstraction. in databese
design, separation of the design decisions on data models at three levels of abstraction --
the physical access (internsi) ievel, the logical access (concepiual) level, and the user
access (external) level -- has led to the so-called ANSI/SPARC three-lavel DBMS (datsbese
management system) architecture (see [Jardine 77) for a presentation and discussions of this
architecture).

This architecture has the property that various different external data models may be
simultaneously supported. Similarly, different internal data models may be supported. Thue,
this architecture lends itself to data-independence -- the conceptual model provides a fxed
inerface between changeabie application programs (i.e., external/conceptual mappings) and
changesble storage-organization/access programs (i.e., conceptual/internal meppinge).

In summary, this thres-level architecture is shown in Figure 2.1. Hers, a user infenNeoe




external models

+

user interface, ..., user interface

+

conceptual model
+

record manager

$

internal model

Figure 2.1. Three-Level Architecture

is a collection of modules providing a single external/conceptual mapping, and the record
manager is a collection of modules that define the conceptual model and its mapping to
physical storage.

2.2. Problems of the Three-Level Architecture

The three-level architecture seems to deal adequately with the problem of isolating
application programs frum storage structures and access strategies, providing one is willing
t0 accept the essentially static nature of the conceptual model. However, it provides no
such isolation at the physical access level (which could either be at the level of physical
storage devices, or at the level of virtual storage as seen through a host operating system).
Typically, the record manager has detalled knowledge of available storage and its
characteristics, in addition to implementing concurrency control and recovery.

Apparently this has not been a significant problem in the past, a3 far as system correctness
is concermnaed, since there are reliable transaction processing systems in existence. However,
it has probably contributed significantly to the development time for these systems. ideally,
one would like to take existing record management software, or new software, and uss it in &
system without regard to the underlying machine architecture. Also, one might want %
change record management policies as system usage changes (as part of sysiem
m).wammw.ucmwhmmm
manager, without regard to possible interactions with concurrency control or recovery that
could cause these subsystems 0 become incorrect.

Thess problems of the three-ievel architecture will become ever more significant given the
incressingly complex hardware provided by multiprocessors, distributed processors,
computer networks, and memory hierarchies. In fact, system correctness could very well
become a significant problem. '
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i . user interface, ..., user interface

4

conceptusl model
+

record manager

+
virtual internal model

$

.concurnncy control, memory manager, recovery manager

+

physical internal mode!

Figure 2.2. Four-Level Architecture

2.3. A Four-Level Arclmoctun

mmwwmmm - the virttal and physical levels --
, : results in & general architecture ke that of Figure 2.2. Here, the physical interme! mode!
N refers to the hardware itseif (possibly seen through a general-purposs operating system), and
the virtual internal modei refers to a data model based on a collection of abstract data
objects, and in which afi details of concurrency, memory hisrarchies, and recovery are
hidden.

The data objects supported st the virtual intemal level could be o varying complanity,
depending on the design. Some exmmples, in order of incremsing complenity, e pages,
segments, and records (see Section 3.2). Refering to Figure 2.2, he record mansger &
responsible for mapping the entities defined by the concephusi dista modsi oMo thase
objects, accessing an object using only the operations defined on that cbiect; The meinury
manager is responsible for mapging thess ocbjects onto physical Siorage; the OGNOWeNSy
control is responsible for detecting and resoiving conficts lses Setlion 28); g W
mmbmmmmammmumm
memory to allow recovery in cass of falkures. !

The advantage of & four-level archiiecture such as this is Tt Rt Soivel NGBS IRl ot the
MMWMMK&MW‘”
(new) record management level.
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D - process see . device interface — - procedure call interface

Figure 2.3. Centralized System

2.4. Example Systems

The four-level architecture can be mapped to a variety of architectures in a variety of ways.
Three exampiles will now be given.

2.4.1. A Centralized System

The four-level architecture can be used in a straightforward way in a centralized system, as
shown in Figure 2.3. Note that in this system, record managers can share code, and that the
record Managers, memory manager, and recovery manager can share bufler space. This
could just as well be a tightly coupled muitiprocessor system, that is, a multiprocessor
systom in which acoess t0 shared memory i equally inexpensive for all processers.

2.4.2. A Personal Computer Network System

One possible mapping of the four-level architecture 10 & personal Compuler network i
shown in Figure 2.4. In this system there is & more complex memory hisrarchy: there are &
aumber of small local memories, and a large shared memory. One way %0 epprodch this
problem is functional distribution. W this approach, access 10 & perticular rescuirts &
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: : : :
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D - process ene - device interface = - procedure call intertace

Figure 2.4. Persanel Computor Natwerk Sysiom

confined %0 a resource manager hat is pinsically ¢lsee 9 the eeswes. 'In this cass, the
result is 8 number of oce! memory Mmanagers (hat we upcasiie jor eoch el memory.
and a giobe! memory manager and oovery maneger that ase sspenails for he shardt
memory (note that the global Mmemcry menager and MeSuity MORQSr Can S hufler

" spuce). One could imagine local recovery managers ae well, but this is net dealt with here.

Furthermore, considering the information requived 0 dutoct confiiots faue Silow) af @
rO80UrCe, theve is ales & coniral CONCUIYONCY conivgt That “Wanages” SWs TEEDWED:

An altwrnative approach is dietribution by repllostion. For entmglie, ¥ W0l WOIS o ol
mmwmmum nmammﬂﬁm
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concurrency
control
DISK DISK TAPE TAPE
KEY . .
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D - process ase - device interface —= . procedure call interface

Figure 2.5. Multi-Microprocessor System

memory managers at each processor, each managing a// local memories as if this were one
large shared resowrce. The same approach could be applied to the concurrency control or
t0 the recovery manager. Some disadvantages of this approach are: (1) the required
process communication is much more extensive; (2) problems such as distributed deadiock
seem very difficult to handle efficiently: and (3) system correctness is in general more in
doutt, due to the added complexity of the system. In fact, in the case of concurrency
control, simuiation studies by Garcia-Molina (see [Garcia-Molina 78]) have shown that, in &
variety of cases, centralized concurrency controls are much more efficient than comparable
distributed concurrency controls.
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2.4.3. A Multi-Microprocessor System

A system using the designs of Chapters 3-6 was implemented on Cm*, a multi-
microprocessor system (see Chapter 7). A proposed decomposition for multi-microprocessor
transaction processing systems is shown in Figure 2.5. This was the decomposition used in
the implementation, except that the user interfaces were combined in a single master
process that simulated the transactions produced by a number of users, and an extremely
simple recovery mas-ger was impiemented as part of the global memory manager. The -
decomposition of Figure 2.5 is essentially the decomposition of Figure 2.4; however,
address-space limitations have resulted in some further decomposition, as shown.

In the case that the concurrency control or global memory manager become system
bottienecks, it is possible to distribute these among several processors without sacrificing
functional decompasition by partitioning the set of shared data objects (see Sections 4.6 and
8.5).

2.5. Serializability and Contlicts

In this final section the probiem of concurrency control design is addressed. The goal here
is to obtain a formal characterization of the kinds of interactions under concurrency that can
lead to loss of consistency, assuming only that each transaction individually preserves
consistency.

Let the following constants and sets be given:

k, the number of transactions in the .system;

O, the set of object IDs;

D, the set of object states (all possible data parts of an object);

T, the set of transaction states, including, in particular, a halting state;
R, W, read and write symbols (arbitrary, different constants).

First, versions of objects and database states will be defined.

Definition. A version is a triple <o, v, d>, where o € O, vis an integer, 0 S v < &k,
and d € D. In the triple <o, v, o>, 0, v, and d are called the object /D, version
number, and data, respectively. A database state is a set of versions satislying:

(1) for every o € O, there is a version with a zero version number, <o, 0, &;

{2) for all object iDs o and version numbers v, there is at most one version
with 1D o and version number v.

Next, transaction ste's and transactions are defined.

Definition. A transaction step is a sextuple <i, j, C, P, R, W), where | and | are
integers, 1 < i £ k, and C, P, R, and W are any functions

C: T~ {R, W},

T N B AT OV . g -
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P: T ”’o.
- R:DXT =T, and
[[’ : W:T - DxT.

Here, / is cafled the transaction number, j is called the sequence number, and C, P,
R, and W are called the conditional function, parameter function, read function, and
write function, respectively. A transaction is a finite sequence of transaction steps,
all with the same transaction number, and with unique, increasing sequence
numbers. ’ :

in formalizing the notion of transaction systems, it is convenient 10 use a variable state
vector <s, 1, 1y, ty, ..., 1), Where s is a database state and each {; is a transaction state.
Given the current vaiue of the state vector and a transaction step </, j, C, P, R, W>, a new
value of the state vector is produced as follows. First, it ¢, is the halling state, the state
vector is unchanged. Otherwise, C is applied to ¢, The result of C determines which of the
following two cases apply. )

Read case: C(t) = R. in this case, R is then applied to <d, 1>, where d is the data
of that version with object ID P(t), and with the greatest version number less than
or equal to i. The result of R is a transaction state, which is the new value of ¢, in
the state vector; the rest of the state vector is unchanged.

Write case: C(f) = W. In this case, W is then applied to t, giving a data vaiue d
and a transaction state ¢. The new value of the state vector is derived by: (1)
setting 1, to ; (2) moditying s, first by removing the version with object ID P(t) and
. mwzm;nmhmamm.wmwm
t ¢ the version <P(t), i, & to s: and {3) leaving the rest of the state vector unchanged.

~ Next, serial and concurrent transaction systems are defined.

Definition. A serial transaction system is any sequence of transaction steps
formed by appending k transactions, with transaction numbers 1, 2, 3, ..., 4, in this
order. A concurrent transaction system (s any sequence of transaction sieps
formed by permuting the steps of a serial transaction system subject to the
constraint that the sequence numbers for sach transaction remain increasing for
that transaction,

A serial or concurrent transaction system can be applied to an initial vaive ot the state
vector by applying each step of the system in sequence, yielding a final vaive of the state
vector. A transaction history of this process is a sequence, initially empty, formed by
¢ appending a quadrupie for each step in the transaction system, with the exception of steps
: for transactions in the halting state. This takes place as follows. Let the current transaction
siep be <, j, C, P, R, W>. If 1, is the halting state, the transaction history is unchanged.
Otherwise: :

W Cit) = R and Pt) = o, sppend <R, /, /, 0> 10 the history.

T _""4.'.\;~!'.l"§‘_\-,§‘.» )/
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HCit) = Wand Pt) = o, append <W, /, j, 0> to the history.

Now, consider the problem of preserving consistency. First, it each transaction individually
preserves consistency, a serial transaction system clearly preserves consistency. Therefore,
if a concurrent transaction system were somehow equivalent to a serial transaction system,
i.e. serializabie, it 100 would preserve consistency. in fact, it has been shown in [Kung and
Papadimitriou 78] that this is the weakest such condition for a concurrent transaction system
to preserve consistency if the conaistency properties are not known (and of course, they are
not known in an application-independent concurrency controf). This leads to the following
definition.
Defintion. A concurrent transaction system is serializable (in the order 1, 2, ..., k)
if, when applied to any initial value of the state vector, the final value is identical to -
the final value produced by applying the serial trangaction system from which the
concurrent transaction system was formed. A transaction history is serializable (in
the order 1, 2, ..., k) if all concurrent transaction systems with this history are
serializable.
This definition is somewhat different than that usually appearing in the literature, in that the
serrializability order is assumed to be given. The question of whether this lack of generality
in the definition above leads to any lack of generality in the concurrency control is taken up
in Chapter 4 (the answer seems !0 be that it does not).

Now, conflicts are defined.
Definition. Given a transaction history containing <R, /, j, 0>, It <W, I, ', o> be
that quadrupie in the history with maximal / and /', subject to /’ < /, if such a
quadruple exists. Then transactions / and /* conflict it ' < i and <R, i, j, 0> precedes
<W, ', j', 0> in the transaction history.

The result of this section is the following theorem.
Conflict Theorem. Assume that O has more than one element, and that 7 has
more than one non-haiting state. Then a transaction history is serislizable i and
only ¥ no two transactions conflict in the transaction hiatory.

Proof.

(*) Given a concurrent transaction system and an initial value of the state vector, note that
(1) the state vector transition produced by a transaction step <, j, C, P, R, W> depends only
on the current valve of t, and, in the read case, that previous transaction wep
<, 7, C, P, R, W with maximal 7, /, I' < /, that was a write to object B(r), ¥ such & sep
exists; and (2) the only transaction state in the state vector changed by this transaction siep
is 1, Therefore, if there are no conflicts in the transaction history, all state vectior tranellions
in the concurrent transaction system will be the same as the state vector transitiong in The
serial transaction system from which the concurrent transaction system was. lormed.
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(-) Given a transaction history with a confiict, a concurrent transaction system and an
initial value of the state vector will be found such that the final value of the state vector is
not the same as the final vaiue produced by the corresponding serial transaction system.
Since there is a confiict, the transaction history is of the form:

w SR 1 J, 0 . KW, T, ], 00 . (P LKD)

LetD = {x,y, ...} and T = {hait, a, b, ...}. O has at least one element (namely 0); ist O =
{o, p, @, ..}. Let the initial state vector be

- €{<0,0,x>,4p,0,x>,4q,0,x>, ..},a,a,a,..),

that is, every object has one version with version number 0 and with data x, and every
transaction is in state a. Let there be one transaction step in the concurrent transaction
system for every quadruple in the transaction history, defining the conditional and parameter
functions of each step so as to agree with the history. Now define every write step in the
concurrent transaction system, except for the one corresponding to <W, /', /', 0> above, as &
write with data x and a transition to the current transaction state. Define the remaining write
step as a write with data y and a transition to the current transaction state. Finally, define
every read step as a transition to the current transaction state, except for the read step
corresponding to <R, i, j, 0> above; define the read function R of this read step as
R(x,a) = a, R(y.a) = b. This concurrent transaction system is not serializable, since the final
valuooft,ba.butmﬂlytheﬂndvahnhbl

Thbsimpbmdexadchmcteﬂzaﬁonofseﬂdmmﬁonhmnm
primarily due to the inclusion of an explicit total ordering of transactions in the definition of
serializability, and to e multi-version definition of cbjects. When these are omitted the
o 8 characterization of serializable histories becomes, by comparison, highly complex -- in fact,
' . the problem of determining if a transaction history is serializable in any order, even under a
3 much simpler data model, has been shown to be NP-compiete (see [Papadimitriou 78]).

Transaction histories  are useful for concurrency control design since transaction histories
formalize the information available to an application-independent concurrency control. Since
the concurrency control is application-independent, it must not aliow any transaction
histories to develop that could have been produced by some non-serializable concurrent
transaction system -- this was the motive for the definition of serializable transaction histories
given above. Finally, the conflict theorem provides a simple way to test for non-serializable
transaction histories. For the system described here, the test is actually somewhat simpler
wmm.:mmmm,mmmm.mmmu
writes (10 shared objects), and there is at most one write to a shared object. The conllict
theorem will be applied in Chapter 4. j
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3. System Overview

In Chapters 4, 5, and 6, designs for the concurrency control and global memory manager
subsystems of the four-level architecture will be developed. This chapter provides an
overview of a complete system using this architecture. Global design decisions, such as
communication protocols between subsystems, are discussed. It is assumed that the system
is distributed, so that the memory manager has been decomposed into local and global
memory managers, as described in Chapter 2. Although this overall design was developed in
the course of the Cm* implementation (Chapter 7), it should apply to any transaction
processing system using the four-level architecture. The following abbreviations will be
used: RcdM - record manager, LMM - (ocal memory manager, GMM - global memory
manager, CC - concurrency control, RcvM - recovery manager.

3.1. Communication between Subsystems

it is convenient to have communication between LMMs and the GMM, LMMs and the CC,
and between the GMM and the RcvM take place via messages -- in this case no other
synchronization will prove necessary. The assumptions here are that there is a message
buffer associated with each process; that sending a message to a process causes the
message to be placed at the end of the message buffer for that process i possible,
otherwise the sending process waits until it is possible to do 30, with queueing of waiting
processes; and that receiving a message removes the first message from the message bufler
if there is one, otherwise the receiving process waits until there is a message 10 remove.

1 Each RcdM and LMM are part of the same process, and they share a common address
space. Communication between the RcdMs and LMMs can take place by procedure calls.

3.2. Data Objects

At the virtual internal level the database consists of a collection of data objects (when the
context is clear, simply object), each identified by a unique /D. A data object will be the unit
of data transfer between local memories and shared memory.

For the Cm* system, pages (units of untyped storage of fixed size) were chosen as the data

objects of the virtual internal level primarily for simplicity. There are only three operations

: defined on a page -- read, write, and delete -- in addition to the operation of creating a new
: page. A more advanced system could provide more complex objects, such as segments
' (units of untyped storage of variable size) and records (units of structured storage -- 889

} Appendix ). One advantage of only using pages (or segments) is genersiity: 0o

' : commitment is made to any particular data model. On the other hand, providing record
3 : objects at the virtuatl internal level could be far more efficient, and this approach would
1 ; certainly be taken if record accees hardware, such as logic-per-track disks, were aveilabie.

= N
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onto data objects in an efficient, flexible way. In the case that data objects are records of
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some type, this will be trivial if the conceptual entities are records of the sams type. The
mapping becomes more compiex as the difierence between the conceptual mode! and the
virtual internal mode! grow. In the case that data objects are pages and concepiual entities
are records, various mappings can be achieved by organizing the databess as a directed
graph of pages, with certain root pages that are never created or deleted -- access to a
record takes place by first accessing a root page, then following pointers to a page (or
pages) containing the desired record. A simpie exampie of this kind of mapping is to link a
number of pages together linearly 80 as to form a sequential file; for a much more complex
example, see Appendix |.

3.3. Read and Write Phases

As noted in Chapter 1, in general, any transaction may be aborted. Therefore, in order to
avoid unnecessary transfer of data objects, all writes to the shared database will be buffered
until the end of the transaction. This results in a read phase, in which the transaction is
executed but does not write to the shared database, and then if the transaction is not
aborted, a write phase in which all modified data objects are transferred to the shared
database.

Some other reasons for choosing this approach are (1) it simplifies the GMM design; (2) the
LMM cannot determine if a transaction will later modify an already modified object, without
adding complexity to the RedM/LMM interface; and (3) the object versions are not known
until the end of the read-phase (see the next section).

3.4. Transaction Numbering and ‘Versions

in Chapter 4, it will be seen that the concurrency control will guarantee that the system
transaction history is always serializable. Furthermore, the serializability order, that is the
transaction numbering, will be made explicit. Thus, the database can be thought of as a
sequence of versions D, D,, D,, ..., where D, is the initial database, and D, is the database
after sequential execution of the transactions numbered 1, 2, 3, ..., i, in this order. Assuming
transactions are executed sequentially, if each transaction actually wrote a new version D, of
the entire database, this new version would possibly be inconsistent until the transaction
completed. But it version D, , were still available, queries that began before the transaction
numbered / had compileted could still "see” a conesistent database by accessing this older
version. Under concurrency, this approach can be simuisted by having each transaciion
write new versions only of the objects it modifiss. This scheme results in the database
coneisting of a collection of objects of one or more versions each, where the version number
of an object is the same as the transaction number of the transaction that wrole the cbject.

This muiti-version object scheme will be used here. This was the motive for defining
versions of objects in the earlier formal development of serializability. 'I'Mdonﬂsq
providing queries with a consistent view of the database without CC support, and of garbage
collecting oid versions, are given in Chapter 6. Transactions are sequentially numbered at
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successful read-phase compietions; the reasons for this are discuseed in Chapler 4.

One objection sometimes raised to muiti-version object schemes is that a large transaction
that modifies the entire database, for example for reorganization purposes, will create a new
vergion of every object, thus doubling the needed storage. However, in single-version
schemes, how is recovery supported in this case? That is, what if as a result of hardware
failure, software errors, or human mistakes, the database is "destroyed” by this large
transaction? This is a real possibility, and one would hope that even in single-version object
based systems an earlier version of the entire database were saved somewhere in this
eventuality. In fact, this suggests the following solution for multi-version object based
aystems: as the large transaction runs, transfer the eartier version of each modified object to
tape or other tertiary memory, and reclaim the secondary memory space. Note that the
necessary mechanism could already be available as an automatic archival subsystem, or as
part of the recovery subsystem.

3.5. Local Memory Managers

The LMM will have several responsibilities: managing a local cache of data objects,
supporting the write-phase, hiding the GMM and CC from the RcdM, and providing a simple
interface between the CC and the GMM. in the case that a local disk is available, the LMM
could possibly participate with the RcdM in some recovery protocois, but this wil not be
considered here.

3.5.1. Cache Management

In order to avoid unnecessary transfer of data objects, the LMM will maintain coples of some
of the objects that have previously been read (by any local transaction or query). Every read
request to the GMM inciudes the version number of a local copy, if such exists. No object
transfer is necessary if the local copy is the “correct” version (as determined by the GMM --
see Chapter 8).

Hammwmﬂmuthumwywmobiect.mthsﬁlucm.m
no GMM communication is necessary at ali. Whether or not an object has previously been
read can be determined by marking the local copy.

in the computer network application (Section 2.4.2), in which a local disk is avallsble 10 the
LMM, at each node in the network that part of the database that is most often used at thet
node will migrate to that node. in particular, one would expect at least the upper levels of
the database access structure (directories and indexes) 10 be present st each node, resulting
in far fewer network object transfers than it caching were not used.

3.6.2. Write-Phase Support

As discussed above, an overall design decision is to write new versions of objects 0 the
shared database only if it can be determined that the transaction that genersies the new
versions will not be aborted, which leads 10 the read-phase / write-phuse protacol: during
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the course of the transaction as seen by the RcdM (i.e. between Tbegin and Tend -- see
below), no writes to shared memory occur; instead, a local copy is modified. Then, after the
RcdM has called Tend, if the transaction is successful, the LMM writes all new versions to
shared memory. Thus, the LMM must maintain copies of ali objects written, created, or
deleted, in order to perform the write-phass. (n the case that there is not enough local
memory for a particular transaction, it is easy to extend the GMM design presented here 80
that the LMM can request extra shared memory for its private use. In a centralized system
this latter technique would always be used since the "LMM" would not have any local
memory to manage. -

Note: a deleted object is treated here as a new version of an object, i.e. in a fashion identical
to a written object, primarily for simplicity.

3.5.3. Hiding Versions and Concurrency from the RcdM

Record management problems can be compiex, and the complexity could become
unmanageable if the existence of multi-version objects, read-phases and write-phases, and
concurrency control had to be dealt with at the same level. It is the responsibility of the
LMM to hide all of this from the RedM, thus completing with the CC, GMM, and RcvM the
support of a virtual internal model. From the point of view of the RcdM, the database
consists of a collection of objects, of one version each, to which it has exclusive access.

The LMM can hide all of this from the RcdM by mapping RedM object accesses to local
copies (retrieving a shared copy il necessary), by sending the necessary information to the
GMM to complete or abort a transaction, and by sending the CC the necessary information
to detect conflicts.

3.5.4. GMM / CC Interface

When a transaction successfully completes, the CC will return a transaction number, which
is just the current vaiue of the transaction number counter (see Chapter 4). it is the
responsibility of the LMM 1o supply the GMM with this number for version number use during
the write-phase.

3.6. Summary of Subsystems and Interfaces
The following is a summary of the functions and interfaces of the various subsyatems.
3.5.1. RECORD MANAGER

Functions. This subsytem defines the conceptual model and its mapping to the dam
objects of the virtua) internal level. This includes the functions of definition of record
siructures; mapping of records, relations, etc., onto objects; creation and maintenance of
indexes; efficient insertion, deletion, update, and retrieval of records; etc.

interface. mmmnmmwnnm
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3.86.2. LOCAL MEMORY MANAGER

Functions. Cache management; buffering until the end of a transaction abjects written,
created, or deleted; doing this in such a fashion that the facts that there are mulliple
versiona of objects and that objects are shared is invisible to the record manager; provide a
small, more controlled interiace between the RcdM, GMM, and CC.

interface.

Qbegin - begin a query. Invokes MQbegin.

Qread - make an object addressable. May invoke Mread, may cache object in local
memory.,

Qrelease - make an object non-addressable (free local memory for object).

Qend - end a query. Invokes MQend.

Tbegin - begin a transaction. Invokes Cbegin and MTbegin.

Tread - make an object read addressable. May invoke Cread or Mread, may cache
object in local memory. '

Tcreate - create an object. Invokes Mcreate, aliocates local memory.

Twrite - make an object read/write addressable. May invoke Mread, Cwrite or Mnew,
sllocates local memory if necessary.

Trelease - maske an object non-addressable (may iree local memory for object).

Tdelete - deiete an object. Invokes Mnew, allocates local memory ¥ necessary.

Tabort - abort a transaction. Invokes Cabort and Mabort.

Tend - complete read-phase of a transaction. invokes Cvalid; then if successiul Mwrites,
writes new versions to shared memory; finally MTand and Cend; otherwise invokes
Mabort,

Tname - generate a unique .name. Invokes Mname.

3.6.3. CONCURRENCY CONTROL

Functions. Detect and resolve possible conflicts so as to guarantee serializabiity;
transaction numbering. Conflicts are detected by keeping track, for sach transaction, of sels
of objects (IDs) read and written; confiicts are resoived by having transactions wel or
shorting transactions.

interface.

Cbegin - begin & transaction.

Cabort - sbort a transaction.

Cread, Cwrite - request for access t0 an object. Check for conflicts - return décision or
have transaction wail.

Cvalid - indicates end of read-phase for transaction. Final confiict check - rum
decision or have transaction wait. ‘

Cend - indicates end of write-phase.
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3.6.4. GLOBAL MEMORY MANAGER

Functions. Maintaining object 1D, version =) physical address mappings; supplying each
query with & consistent “snapshot” of the datsbase; creation of new objects; garbege
collection of oki and deleted cbjects; generation of unique names.

interface. :

MTbegin, MQbegin - begin a transaction, query.

MTend, MQend - end a trangaction, query.

Mabort - abort a transaction.

Mread - read an object find correct version and return version number and address
in shared memory. '

Mnew. - aliocate space for new version of an object (including “deleted version”).

Mcreats - create a new object (allocate apace and retum iD).

Mwrite - write an object (including “deleted version™): return address of shared memory
allocated in Mnew or Mcreede.

Mname - Qenersie and return a unique nhame.

3.6.5. RECOVERY MANAGER

Functions. During normal operation: write each new version (say), new vaiues of the write-
phase completion counter (see Chapter 8), other information useful for recovery from fallures
on highly reliable, inexpensive, write-once media. During recovery, find old versions in such
a faghion 80 as to allow recovery of a previous consistent state.

Nete. R should often be possible for the GMM to recover from non-disk system fallures -- in
general, this GMM-only recovery will be possidie if the faliure did not cause garbage to be
writion on the disk in "sernsitive areas”. Garbage can often be detected by redundancy
technigues, 6.g. checksuma. In the simpiest case, the RcvM could be used periadically to
backup the entire contents of system disks, with n0 transactions allowed during this perfod.
For example, in the Cm* system described in Chapter 7, a very simple RcvM was writien as
part of the GMM that saved the GMM object ID, version =) address mapping on request,
and the database Heelf could be backed up ¥ desired by file transfer to another machine. A
somewhat more complex use would be 10 periodically backup "snapshots” of the detabase,
coneidering this entire procedure as one very large query -- transactions would silt be
sllowed in this case. R is aleo possible to do this in a much more dynamic way, and 0 allow
data-independent recovery st tramsaction granularity, by having the RcviM save each new
mammanbmunmm»mmmupm
phase completion list or the write-phase compistion counter (see Chapler 8). The coet of
this latter approsch is an open problem, but would perhaps prove useful given large
inexpensive write-once mamaries, such as video disks. Just s there are many policies for
the CC, there alsc seem 10 be many Rcvi policies. n any Gase, the problem of recavery is
an important one, but is beyond the cope of this thesis: the design and use of the recovery
menager will not be dealt with in any more detall here.
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4. A General Paradigm for Concurrency Controis

In this chapter a general design paradigm for concurrency controls will be presented. First,
it is necessary to discuss in more detail the assumptions made regarding the fashion in
which the CC controls transactions.

4.1. Controlling Transactions

As a transaction runs, on the first Tread for a given object, the LMM will send the CC a
Cread message for the object, and wait for a reply. This message is interpreted as a request
for read access to the object. The CC must at this point decide whether to grant the
transaction read access immediately, in which case a positive reply is sent, to abort the
transaction, in which case a negative reply is sent, or to postpone the decision, in which
case a reply, perhaps positive, perhaps negative, will be sent at some later time.

Similarly, on the first Twrite for a given object, the LMM will send the CC s Cwrite message
for the object, and wait for a reply. This Cwrite message is interpreted as a request for
read/write access to the object. Again, the CC replies with its decision, or postpones its
decision.

Atthough the CC can abort a transaction by replying negatively to a request, it may also be
the case that the CC will decide to abort a transaction at a point where the transaction is not
weiting for a message from the CC. For example, the CC may decide to abort one
transaction based on a request from another transaction. If it is possible to interrupt the
transaction, the abort may be handied in this fashion. Timing problems can be handled by
requiring the LMM to send an acknowiedgement message to the CC, and by the CC marking
the transaction as aborted, ignoring all requests from that transaction until the
acknowiedgement is received. ARternatively, the CC can mark the transaction as aborted,
and send a negative reply on the next request from the transaction (for simpiicity, the CC
algorithms of Appendix IIl use this technique). in any case, the transaction is said t0 be
sborted whenever the CC either replies negatively, interrupts the transaction, or marks the
transaction as aborted, whichever occurs first.

# a transaction already has read or read/write access t0 some object, a request for the
same kind of access 1o the same object is handied by immediately returning a posiive reply
(unises the transaction is aborted).

When a transaction “"ends” (ends from the point of view of the RcdM), the LMM will send the
CC a Cvalic message, and walt for a reply. Prior to this message, a transaction that has not
been aborted is seid t0 be active. This message is in sssence a request to the CC for fined
approval, or vafidation, of the transaction. As discussed in Chapler 3, an overall design
decision is send the GMM new versions only i the transaclion that generated the new
versions can be guarantesd not 10 be aborted. Since the LMM will begin the write-phase at
this point ¥ a positive reply is sent, the decision ol the CC is in this sense final. When and ¥
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the CC does rsturn a positive reply, the transaction is said to be validated. Included with the
reply is a transaction number, which the LMM will use as a version number for all objects
written in the write-phase, and which the GMM will eventually use in WPCL processing (see
Chpater 8). Aborted transactions are not numbered. A transaction number is genersted
simply by returning the value of an integer transaction number counter, for brevity named
TNC. and then incrementing the counter. Let TNC be initially one.

At any point in time there will be a validated transaction history consisting of all reads and
writes of validated transactions with transaction numbers 1, 2, 3, ..., TNC-1. The function of
the CC is to control transactions so as to guarantee that the validated transaction history is
always serializable. By the conflict theorem (see Section 2.5), this means that the validated
transaction history must be kept conflict-frese. There are two methods that can be used for
guaranteeing this. First, transactions can be aborted -- an aborted transaction will not be
part of the validated transaction history. For example, let 2 be a transaction in the validated
transaction history: a correct concurrency control will in the future abort any (not yet
validated) transaction b that conflicts with a (even though b has not yet been assigned a
transaction number, it is known that if it ever is numbered, the transaction number of a will
be less than the transaction number of b, 80 it makes sense to speak of a conflict between a
and b). The reason for this is that if b conflicts with a, one of the two must be aborted --
however, a has already been given final approval, 80 b must be aborted. Second, in an
aitempt to avoid aborting transactions, transactions can be made to wait for read or
read/write access. The idea is to rearrange reads and writes by postponing some of them
s0 that the validated transaction history is kept conflict-free.

_ ; ' Suppose now that a Cvalid message is received from some transaction (that is not aborted).
\.‘

This transaction does not conflict with any previously validated transaction (or it would be
sborted). How can the CC handle this request? As far as consistency of the database is
concerned, the transaction can be validated immediately. Another possibility is for the CC to
' postpone the decision. At first this might seem pointiess: if it is possible to validate the
o transaction, why not do so immediately? The reason is that cases may arise in which a
! transaction, if validated, causes a conflict with an active transaction, which means that the
b active transaction must then be aborted. However, if the vaiidation of the transaction were
;f postponed, it might be possible to eventually validate both transactions. A transaction for
P which validation has been postponed is said io be pending.

, Finally, after a validated transaction completes its write-phase, the LMM will send the CC a
Cend message. Such a transaction is then said to be completed. No decision is necessary
at this point for the transaction that sent the message, since the final decision was made
eariier when the transaction was validated -- rather, the purpose of this message is to inform
the CC that the new versions written by the transaction may now be read by other
transactions. In summary, the siate transitions of a transaction are shown in Figure 4.1,
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active

il

pending
] 1

Figure 4.1. Transaction State Transiﬂoni

4.2. Correctness of the Concurrency Control

in Section 2.5, conflicts were defined in terms of transaction histories, and transaction
histories were defined as a sequence of quadrupies of the form <R, /, j, o> or <W, |}, j, 0,
where i is a transaction number, j is a sequence number, and o is an abject ID. However,
this formalism is unsuitable for the present purposes, since aithough the CC has information
about the reads and writes of transactions, it has no information about their exact
interleaving. For example, with respect to writes, the CC "knows" only that for any
transaction, all writes take place after validation and belors compietion. Also, the
transaction number of a transaction is not known until validation. In order to define a
correct CC, a formalism describing the actions of the CC is necessary. With this in mind, a
CC history is defined as a sequence of tupies of the following forms, where a is a transaction
1D and p is an object 1D:

<R, &, p>, meaning a is granted read access to p;
<W, a, p>, meaning a is granted write access to p;

<V, 8>, meaning a is validated;

<A, 2, meaning a is aborted;

<{C, 2>, meaning the completion measage from a is received.

The following predicates will be useful.

Ris, p): <R, a, p> appears in the CC history;
Wia, p): <W, a, p> sppears in the CC history:
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V(a): <V, a> appears in the CC history.

The CC history of an executing CC is maintained by appesiding the appropiate tuple as each
of the above actions is taken by the CC. This is straightforward except for <W, a, p>: when
a transaction requests read/write access via Cwrite and a positive reply is returned,
it R(a, p), then only <W, a, p> is appended; otherwise, <R, a, p> and <W, a, p)> are both
appended. With this notation, a correct CC history can be defined as follows.

Correctness. The CC history is correct if for all pairs pf transaction IDs 2 and b in
the history such that R(a, p) and W(b, p), one of the following cases holds:

C1. Not V(a) or not V(b);
C2. Vv(a) and V(b), and <V, a> precedes <V, bd;
C3. V{a) and V(b), <V, b> precedes <V, a>, and <C, b> precedes <R, a, p>.

A correct CC is a CC for which the CC history is kept always correct. This correctness
criterion is a straightforward application of the conflict theorem. In case C1, there is
currently no conflict between a and b, since at least one of them has no writes to the current
point. Next, if the transaction number of a is less than the transaction number of b, no
conflict is possible between a and b with respect to a read of a and a write of b if all reads
of a take place before any writes of b, as is the case in C2. Finally, if the transaction
number of b is less than that of a, case C3 requires that a not be granted read access to the
object in question until it can be guaranteed that b has written the new version of the object.

The correctness criterion is violated only in the case that for some transactions a and b,
R(a, p). W(b, p), V(a), V(b), <V, b> precedes <V, a>, and <R, a, p> precedes <C, b> (see
Figure 4.2). In such a case a conflict is possible in the validated transaction history:
transaction a may have read the most recent version of the object with ID p before the new
version created by transaction b had been transferred. Thus, the validated transaction
history is serializable if and only if it is conflict-free, and it can be guaranteed to be conflict-
free if and only if the CC history satisfies the above correctness criterion.

4.3. The Paradigm

The correctness criterion defines correct CC histories in a static way: given a CC history, &t
can be determined if the CC history is correct. The problem now is to design the CC so that
the CC history is kept always correct.

The independence of the CC from other modules and from applications means that the CC
can make no predictions about the future accesses of transactions. in fact, as explained in
Section 1.2, in most cases such predictions are impossible. Therefore, conditions possibly
leading to a violation of the correctness criterion must be detected dynamically based on
incoming access requests. (n the absence of such conditions, access requests will alwaye
be granted. That is, the CC will abort transactions or have them wait based only on current
condftions that could possibly lead to violations of the correctness criterion.
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<W,b,p>
4 <R, a,p> v, b
<V, 8> <C, o |

_"’ -- precedes in time

Figure 4.2. Only Violation of Correctness Criterion

The only condition that could possibly lead to a violation of the correctness criterion is that
R(a, p) and W(b, p) for some transactions a and b. This condition is called a possible
conflict, and can be detected by maintaining for each object ID p a read set, the set of
transactions a for which R(a, p), and a write set, the set of transactions a for which W(a, p).
Empty read or write sets need not be maintained; aiso, these sets need not be maintained for
aborted transactions (due to C1). It will aiso be seen that they need not be maintained for
completed transactions (this is due to the fact that transactions are numberad in validation

order -- see Section 4.5 below).

The paradigm will be described by listing various options for handling access and validation
requests. When R(a, p) and W(b, p) is detected for some transactions a and b, both active
or pending, it is assumed that the CC records this fact for later reference. The aiternative is
to possibly (depending on the options selected) later check various read and writa sets for
intersection, which may become excessively time-consunung for a large number of
transactions or for large read and write sets. When R(a, p) and W(b, p), a and b active or
pending, this relation between a and b is written as a — ».

The meaning of the relation a — b is that in order to validate both & and b, 2 must be
validated before b (this is from C2 -- note that C3 does not apply since b is not completed).
Depending on the options selected, it may arise that & — b and b — a, in which case only
one of the two transactions can be validated. Similarly, if a = b, b - ¢, and ¢ —* a, Only
two of these three transactions can be validated. In an attempt 0 validate both a and »
whena —bbutnotb ~ a, and also in an attempt to avoid cyclic -+ conditions such
as & — b and b - a, an access or validation request may be postponed until one or more
events have occurred. This is called scheduling. When the event or events have occurred,

the access or validation request is re-analyzed as i newly arrived. It is sssumed that the
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goal of scheduling is to avoid aborting transactions. Therefore, from the correctness
criterion, there are two types of events that can be used in scheduling: the validation of a
transaction (C2), and the completion of a transaction (C3). The following notation will be
used for scheduling.

a =, b: a positive reply to the current access or validation request of trangaction
b will not be sent until transaction a is aborted or validated (transaction
b may be aborted before then);

a=s. b: a positive reply to the current'accbss request of transaction b will not be
sent until transaction a is aborted or completed (transaction b may be
aborted before then).

When a transaction requests access to an object p, it may be desirable for the CC to base
its decision on the processing of this request not only on those transactions a for which R(a,
p) or W(a, p), but aiso on those transactions for which access to p has been postponed
(e.g., in order to queue requests). If a read or write request from transaction a for object p
has been postponed, this is written as RP(a, p) or WP(a, p), respectively.

The paradigm follows. The generality of the paradigm is considered in Section 4.5.
Read request. Transaction a requests read access to p, no current read accees.

R1 (aborted and completed transactions). Any aborted transaction can
be ignored by C1, and any completed transaction can be ignored by C1 (if
a is never validated) or C3 (if a is later validated).

R2 (postpone). For each active, pending, or validated transaction b with
W(b, p) or WP(b, p) (WP(b, p) is possible only for b active), do one of the
following.

R2.1 (skip). Skip b in this step.
R2.2 (abort). Abort b (applicable only if b is not validated).

R2.3 ( =, ). Schedule b =». 2 (thereby avoiding aborting a,
sborting b, or a = b -- ses R3 and R4 below).

if R2.3 was selected for any b, the access request has been postponed. and
the CC history remains correct by C1. Later, the access request will be re-
processed; for now, ferminate.

R3 (abort). It is assumed now that the access request will not be
postponed. if there is any velidated transaction b with W(b, p), nelther C2
nor C3 can ever be true for a and b ¥ the access request is now granted.
Furthermore, although it doss not viciste the correctness criterion, ¥ a is
granted read access now, &t may read inconsistent data, since the new
version of p written by b may or may not be read by 2. Therelore, if there is
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any validated transaction b with W(b, p), since a can never be validated, a
should be aborted: abort a and terminate Otherwise, if there are any active
or pending transactions with W(b, p) or WP(b, p), optionally abort a, and
terminate. ‘

R4 (grant). For each active or pending transaction b with W(b, p),
record & = b. Then, grant a read access, and terminate.

Write request. Transaction a requests write access tq P, NO current write access.

W1 (aborted and completed transactions). Any aborted transaction can
be ignored by C1, and any validated or completed transaction can be
ignored by C1 (if a is never validated) or C2 (if a is later validated).

W2 (postpone). For each active or pending transaction b with R(b, p) or
RP{b, p) (RP(b, p) is possible only for b active), do one of the following.

W2.1 (skip). Skip b in this step.
w2.2 (abort). Abort b.

W2.3 ( =, ). Schedule b =», 2 -- in this option, a walts for the
validation of b at the current paint, rather than possibly waiting at the
validation point in V1.3 below.

¥ W2.3 was selected for any b, the access request has been postponed,
and the CC history remains correct by C1. Later, the access requsst will be
re-processed; for now, terminate.

W3 (abort). if there are any active or pending transactions b for which
R(b, p) or RP(b, p), optionally abort a, and terminate.

w4 (grant). For each active or pending transaction b with R(b, p),
record b — a. Then, grant a read access, and terminate.

Note that the write paradigm can be obtained from the read paradigm by interchanging R
and W, =, and =»,, by reversing —», by replacing "completed” with “validated or
completed” in R1, and by removing the now inapplicable statement that 2 be aborted if there
are any validated conflicting transactions in R3.

Read/write request. Transaction a requests read/write accees to 2, no current
access.

In the processing of this request the set of possibly confiicting transactions
are all those transactions b with Wb, p), WP(b, p), R(b, p), or RPD, p)
Again, any of these may optionally be aborted; 2 may optionally be
postponed; a may optionally be aborted; or a may be granted read/write
access. in the case that a is postponed, =» . scheduling must be ueed for
any transaction b with Wi, p) or WP(b, p), and =», scheduling for any
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transaction b with Ab, p) or AP, p) (there is no harm in using both types
of scheduling with respect to the same transaction -- in such a case =», is
simply superfluous). As in a request for read access, if a is not postponed
and there is a validated transaction b with W(b, p), a should be aborted.
Finally, if a is granted read/write access, a8 — b must be recorded for each
transaction b with W(b, p), and b — a must be recorded for each transaction
b with R(b, p) (both might be recorded with respect to the same transaction).

Validation request. Transaction a requests validation.

v (postpono.). For each active or pending transaction b with b -» a, do
one of the following. ’

vi.1t (s'klp). Skip b in this step.
V1.2 (abort). Abort b.

V1.3 (=, ). Schedule b =», a (thereby possibly avoiding aborting
a or b). . .

¥ V1.3 was selected for any b, the validation request has been postponed, a
is now pendino.andmeccmaorymmamscomct_bym. Later, the
validation request will be re-processed; for now, terminate.

V2 (abort). I there are any active or pending transactions b with b — g,
optionaily abort a, and terminate.

v3 (validate). For each active or pending transaction b with b — g, short
b. Then validate a, and terminate.

This completes the description of the CC paradigm. In the next section the question of how
best t0 use the paradigm is considered.

4.4. Policies

The correctness criterion gives only those necessary and sufficient condtions for the
serializability of the validated transaction history -- it does not, for example, rule out the case
in which a transaction reads inconsistent data (see R3 shove), aithough it doss rule out the
case in which such a transaction is ever validated. Nor doss it ruie out the case in which a
transaction is never validated or aborted. In designing the paradigm for processing access
requests sbove, the only criteria used were the correctness criterion, the independence of
the CC, and the assumption that the purpose of scheduling is to avoid aborting transactions.
No other criteria, such as “faimess”, or the guarantesd eventual successiul compiletion of
transactions, were used. But in practice, first, it is necessary to choose one of the options
provided by the paradigm; second, additional correctness properties such as guaranieed
eventual successiul compietion may be important; and finally, it is desirable t0 choose
options 30 &8 to optimize performance i possible. These problems will be deskt with here in
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a policy, which is that part of the CC deaign that choosss the options as provided by the
above paradigm. ‘

Some additional correciness properties that may be important have to do with the two
mechaniams that are used to control transactions: scheduling and aborting. In the case of
scheduling, two well-known problems are deadlock (in which the union ofthe-»vand-oc
relations i3 not a partial-ordering) and starvation (in which a transaction is repeatedty
scheduled so that it waits potentially forever). Assuming aborted transactions are
automatically restarted until they complete successfully (this may or may not be the case in
an application), two analagous problems for aborting are cylic restart (in which a finite set of
transactions repeatedly cause each other to be aborted so that none of the transactions is
ever validated) and infinite restart (in which a transaction is repeatedly aborted due to
possible conflict with a potentially infinite set of transactions). Note: there does not appear
to be widespread agreement in the literature in terminology for these latter two problems.
Whether or not any of these conditions are problems depends both on the policy and the
application: it the policy never chooses a schedufing option, clearly deadiock and starvation
are not problems. On the other hand, perhaps deadiock and starvation are possible, but in
the application it is acceptable either to assume that (in the case that transactions are
interactively generated) impatient users will abort their transactions, or to assume that the
LMM will abort transactions on timeouts. This latter mechanism, which would often be used
in a distributed environment, could perhaps make deadlock detection unnecessary. If
deadiock detection is necessary, then there may be a policy question of how often to check
for possible deadlock (see [Gray 78)).

All known solutions to the problems of cyclic and infinite restart invoive some kind of priority
acheme. The general idea is, first, to design the policy 80 that transactions with sufficiently
high priority will never be aborted, and second, to give a transaction increasing priority as &t
becomes oider or is repeatedly aborted. Of course, priority schemes cen be based on
performance criteria as well. Some of the many possible priority schemes are: (1) give
increasing priority to transactions as they are aborted; (2) give incressing priority to
transactions as their original starting time (that is, a starting time not changed by repeating a
transaction due to a fsilure) becomes oider -- these are the timestamp-based approaches
(see the following section); (3) give priority to transactions that are generated ineractively;
(4) give priority to transactions that are part of some real-time process; (5) give priority to
transactions that are for some reason expensive (o retry (e.g., "big" transactions). Various
priority schemes can also be combined.

The use of any priority scheme would involve extensions 10 the CC interface as presentad in
Appendix ii, e.g., inclusion of & unique transaction ID, a starting time, or a sansaction class
as a parameter of Cbegin. Here, various basic policies that do not use any priority acheme
will be studied. However, the extensions necessary t0 use a priority-based policy are simpls
and straightiorward. AN that is necessary is 10 inohude any information about transactions a8
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required by the policy as additional perameters to Cbhegin.

Policies can be defined statically at design-time, or dynamicaily as policy modules. In the
case that policies are defined statically various optimizations can be made -- for example, in
some policies deadlock is impossible, and 30 deadlock detection may be omitted. On the
other hand, the policy module approach may offer efficiency advantages in the case that the
policy module is designed 30 as to be able to change policies at run-time. in the case that
several policies are of interest, but their differences cannot be predicted, it becomes easy to
experiment with these policies by using a policy module that provides all such policies. An
exampbisthepolicymoduleusedtnmCm‘sysum(mChwn.whichmw
distinct basic policies (see Chapter 5).

4.5. Generality of the Paradigm

A great deal of previous research in concurrency contro! design can be viewed as policy
design. It seems that some confusion has often resulted due to the lack of a clear
separation of fundamental cofrectnes criteria (e.g.. the correctnass criterion above),
additional correctness criteria (e.g., guaranteed eventual successfiul completion), and policy
criteria (e.g., giving priority to transactions that are expensive to retry). Although the deesign
problems may be listed independently, they may not be handled indepandently in the design
itseif. This has had the effect of making essentially similar concurrency controls seem
superficially quite different. In fact, in a recent extensive survey of proposed concurrency
controls [Bernstein and Goodman 81), it is concluded that “all practical concurrency control
methods can be analyzed as combinations and varistions of two basic synchronization
techniques: two-phase locking and timestamp ordering.”
Two-phase locking (due to [Eswaran et al 78]) is obtained from the sbove peradigm by
selecting options R2.3 and W2.3 (or altemnatively, V1.3 in place of W2.3) whenever
‘@ . possible (i.e., in the absence of deadiock). There are many variations of timestamp ordering
' concurrency controls, and its true nature is often obacured by combining the technique with
two-phase locking types of policies. In what might be called "pure” timestamp ordering (no
two-phase focking component), options R2.2 or R3 and W2.2 or W3 are always selected,
with R2.2 or W2.2 selected if (referring to the paradigm) a has an eariier original starting
time than b, and with R3 or W3 selected otherwise. Although the above claim of [Bemstein -
and Goodman 80] cannot be agreed with here (timestamp ordering seems more properly a
policy priority scheme, and concurrency controls involving a — b options R4.1 and W4, 1
are neglecied), they do clearly point out that almost all proposed concurrency controls are
esssentiafly similar due o the fact that a common problem -- guarameeing serializebliiity -- ls
being aoived.

A major advantage of the CC design here is the clear separation of basic correctvess snd
policy. Since policy problems are quite compiex in themesives, and subject 10 verious
sohstions under dilerent appiications and environments, they should be handied separately
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from the basic correctness problem of guaranteeing serializability. As an example of a
complex policy problem, two-phase locking assumes that aborting transactions is expensive,
and tries to avoid this whenever possible, but at the expense of scheduling. Yet, given the
LMM description of Section 3.5, a transaction that will later be aborted is still possibly doing
useful work in caching copies of objects. Such a transaction, when restarted, could quickly
run to completion if very few object transfers were then necessary. So whether aborting or
scheduling is more expensive is not cbvious, and is most likely highty application dependent:
a truly general concurrency control should provide for all kinds of policies, including thoss
that select 2 — b options, such as [Kung and Robinson 81) and [Stearns and Rosenkrantz
81]. The advantages of separating basic correctness and policy, in system correctness and
maintainability, have been discussed in a more general context in [Everhart 79).

The paradigm above is completely general, given the following conditions.
1. Access requests cannot be pradicted in advance.

2. The goal of scheduling is to postpone transactions for as short a time as possible
in order to attempt to prevent aborts.

3. A transaction, once validated, cannot be aborted, and the validated transaction
history must be kept serializable /n validation order..

Condition (1) is common to all application-independent concurrency controis. Condition (2)
excludes highly heuristic scheduling techniques such as "wait 10 seconds and retry.” Such
techniques may be vaiuable in distributed systems, but are beyond the scope of this work.
Condition (3) seems to be common to all practical concurrency controls. The notion of
validating a transaction, or giving it final approval, is also often called committing a
transaction (e.g.. see [Gray 78] -- but aiso see the note below). This seems 10 be a
necessary simplification to make the problem of concurrency control manageabls. in fact, it
is hard to imagine a system where one never knew for sure whether a transaction wes
compieted -- the notion of a validation or commit point ssems inescapable.

On the other hand, maintaining the validated transaction history serializable in validation
order is an efficiency constraint. Note that serializability, as defined here, depends only on
the ordering of transaction numbers, and not on the numbers themseives. Thus, ¥
trangaction a requests validation, and the current validated transaction history consists of the
trangactions numbered 1, 2, 3, ..., n, then a could conceivably be validated under transaction
number 1.5, 2.5, 3.5, etc. However, this would require maintaining read and write sets for
completed transactions, would probably prove excessively time-consuming, and could require
(depending on the design) query validation as well. Therefore, such schemes are rejecind
here. it ssems that in all existing or proposed concurrency controls in which transacions
have & commit or valkiation step, the transaction history is mainiained serislizable n
validation or commkt order. |

Mmmmlﬁémwmyco&MM(wm&ﬂM
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manager commit apparently have previously besn confused -- in fact, in many systems, they
are (accidentally) the same, probably due to the lack of ssparation of CC design from RcviM
design. The CC commit point is described above. A Rcvid commit point is quite different:
assuming & memoary hierarchy, a number of RcvM commit points at different levels can be
defined as points at which, if memory at the given level of the hierarchy doss net fall, the
writes of transactions that have completed write-phases (say) to that level can be recevered.
Here, it was earlier decided to send the GMM new versions only after (CC) validation, for .
efficiency and simplicity reasons, which resuits in CC commit points preceding RcvM commit
points.

Finally, the paradigm by no means solves the general concurrency control problem, since the
scope of concurrency control policy design is so large. For example, much of the research
in distributed concurrency control design can be seen as the following problem: design the
policy so that a decision regarding an access request for an object p can be made using
only information that is present at the node where p is stored. Another large area of
research in policy design, now made possible with the above general paradigm, is that of
designing a policy module that selects the optimal type of concurrency control based on,
say, performance monitoring or usage statistics. This is made possible by the sbove
paradigm since the policy module need not be restricted to any one type of policy; whatever
decisions are made by the policy module, the validated transaction history stil remaine
serializable. For example, a policy module that selected options at random would still be a
valid policy module, in terms of guaranteeing serializability.

4.8. Partitioning the Concurrency Control

In practice, it is often the case that possible conflicts between transactions arise rarely (see
[Kung and Robinson 81] for a discussion of systems where this is likely to hoid). In these
cases, most of the work done by the CC is simply checking for each access request for
some object that the read or write set for that object is empty, and after the request has
been granted, updating the read or write set for that object. In the case that the CC forms a
system bottieneck, this suggests the following scheme for introducing paralietism in the CC:
partition the set of shared data objects in some fashion (for exampie, by mapping each
object with ID /D imo partition number /D MOD n, whers there are n partitions), and use a
separate process 10 manage the read and write sets for each partition. In a computer
network application, if objects are partitioned based on the node where the transaction thet
created the object originated, the result is a type of primary site approach.

The remaining information managed by the concurrency control is transaction information:
the status of each running transaction, the set of objects accessed for each transaction
(these osets are used t0 updste the proper read and write sets when the transaction
compietes or aborts), and sl ~», =»., and =5 . relations between thees transactions. in the
simplest case, this information can be menaged by a single additional process, with a
message interface between this process and the processes managing read and write sets.
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Altlematively, several processes could be used to manage transaction information (for
example, the same processes that manage read and write sets), and ali transaction
information could be stored in shared memory (in this case, access to transaction
information would have to be synchronized, but designing the synchronization mechanism
doss not present any fundamentally new problems).

in the case of computer networks, a large number of aschemes have been proposed in which
transaction information is distributed over the network (typically, if a conflict develops
between two transactions due to an access request for some object, this information is
stored at the node where the object is stored). The use of a central transaction number
counter can be avoided by determining the order in which transactions are possibly validated
beforehand (by assigning timestamps at the beginning of transactions, for example -- if the
timestamp of a is less than that of b, in order to validate both a and b, a must be validated
before b). It multi-version objects are used, the same ordering must be realized in version
numbers. The main problems with these approaches are that it is more difficult to be sure
that the system is comrect (the pre-determined ordering is often used in an attempt to cavee
identical decisions to be made at different nodes without communication, and so the
correctness argument depends on a priority scheme), and often there are no resulting
performance advantages (see [Garcia-Molina 79]). However, if the network is geographically
distributed (with nodes in different cities, for example) and there is locality of reference
(transactions almost always access objects stored at the node where the transaction
originates), there are clear advaniages to these approaches. in such cases, if the possible
validation ordering is determined beforehand, the paradigm can be made to apply by adding
the following restriction: a — b, a =», b, or a = b can be chosen as an option only if a
precedes b .in the predetermined ordering.




- S A

B T T M e s e s

BasiC PouicEs 4

5. Basic Policies

In this chapter a set of basic policies is defined. It will be seen that the design space for
concurrency controis is much larger than has previously been recognized -- even in the
simplest case in which all transactions are handied uniformly there is a large number of
distinct policies. This set of policies should be considered only as a foundation for policy
development, since in practice there are many valuable extensions. Two extensions to
policies using scheduling, deadlock detection and queuing of requests, are described. Other
extensions involve the intraduction of priority schemes, as described in Chapter 4. As
examples of how one might begin to develop a policy, possible philosophies behind several
policies are discussed. '

5.1. Detinition of the Basic Policies

A basic policy is defined here as a policy in which all transactions are handied uniformly
without the use of priorities. For each type of request, the paradigm of the previous chapter
defines a set of transactions that may conflict with the transaction issuing the request: for a
read request for p, all transactions b with W(b, p) or WP(b, p); for a write request for p, all
transactions b with R(b, p) or RP(b, p); for a read/write request for p, all transactions b with
W(b, p), WP(b, p), R(b, p) or RP(b, p); and for a validation request from a, all transactions b
with b — a. In each case, these transactions will be called here simply the conflicting
transactions. Given a request, if the set of conflicting transactions is non-empty, the policy
must be consuited. For a basic policy, all conflicting transactions are treated uniformly. A
number of basic policies can be obtained by choosing one of the following options for each
type of request (the “kill/die” terminology is taken from [Rosenkrantz et al 78)).

wait - have the requesting transaction wait on all conflicting transactions, using =»,,
or =». scheduling as given by the paradigm.

kill - abort all conflicting transactions.
die - abort the requesting transaction.
grant - grant the access request (not an option for a validstion reguest).

For a read/write request from & for p, if the wait or kil option is used, one might want to
handle transactions b with R(b, p) or RP(b, p) but nat W(b, p) nor WP(b, p) seperately from
transactions b with W(b, p) or WP(D, p). For example, transactions b with R(b, p) or RPD, p)
but not W(b, p) nor WP(b, p) couild be ignored at this poirt, and possibly be waited on at the
validation point if the possible conflict does not tumn into a real conflict, while transactions
with W(b. p) or WP(b, p) might be waited on at the current point. To handie these schemes,
three sub-options may be added to the wait or kill options 2 the case of a read/write
request, as follows.

read - wait on or sbort only those transactions that have issued a. conflicting read
request but have not issued a confliciing write request.
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write - wait on or abort only those transactions that have issued a conflicting write
request.

all - wait on or abort all confiicting transactions.

Using these sub-options, 4x4x(2x3 +2)x3 = 384 basic policies have been defined. However,
there is some redundancy: if the grant option is never used, and the al/ sub-option is used
for a read/write request, there will never be any conflicting transactions at the validation
point, and so the validation option is unused. Eliminating this redundancy, 384 - 3x3x3x2 =
330 distinct basic policies have been defined. In the Cm* system described in Chapter 7, a
policy module was used that provided all of these policies.

One might aiso consider policies in which active and pending or postponed and non-
postponed transactions are differentiated to be basic policies, although theee could also be
considered priority achemes. In any case, sub-options to differentiate among classes of
transactions can be added to the above scheme for basic policies, futher increasing the
number of policies.

5.2. Deadlock Detection

Policies that use wail options may avoid deadiock by the use of a priority scheme, at the
expense of increased probability of aborts (e.g., see [Rosenkrantz et al 78]). For the basic
policies defined above, though, deadlock is possible. In this section the deadiock detection
scheme used in the Cm* system will be described. Some altematives to this scheme are to
"not worry” lboutdoadbck(ulymgonﬁmeoutstolbontrmcﬂom.iorcxm).ww
periodically check the wait relation for cycles (see [Gray 78)).

The scheme used in the Cm* system was to schedule b =»,, 2 or b =». a only if it was not
the case that a =»° b, where =»° is the transitive closure of the union of the =», and =,
relations. If this could not be done, the requesting transaction was aborted. In this way the
union of the =»,, and =, relations was maintained as a partial ordering. In order to
determine it a =»* b, the following simpie recursive procedure was used.

1.Ha=>, bora=s,D then a =° b -- retum trve.

zForuchmacﬂoncwd\Ma-vcua-occ # c=»°pd, then
a =° b -. retumn true.

3. Otherwise, it is not the case that & ==°* b .. retum false.

At this point a modification that may be made to the basic policy wait option above can be
described. Consider the following example: a requests write access to p, and the request is
postponed so that WP(a, p); next, b requests read access to p, and 2 =e, b Is stheduled.
Later, when the write request from a is re-processed, b will be a confiicting transaction since
RP(b, p), but scheduling b =»,, a wouid fead to deadiock, and 80 a is sborted. This does not
seem {0 make sense in terms of a policy: i a really shouid be aborted due 10 the access
seqguest from b, why not abort a at the time the access request is received? For this reason,
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in the Cm* policy module, when processing a request from a for p, all transactions b such
that a =»,, b or a =» b and RP(b, p) were removed from the set of confiicting transactions
in the case that a wait option was selected. it shouid be clear by now that any modification
such as this does not affect fundamental correctness - this is one of the main strengths of
the paradigm. in this case, the result is a queueing structure on objects in which, for each
object, a number of readers can be waiting for a writer which can in tum be waiting on a
number of readers, etc., on a first.come first-served basis. Of course, other schemes could .
be used. For example, a type of reader-priority scheme resuits if, on a read request from a
for p, transactions b with WP(b, p) are removed from the set of conflicting transactions
before applying the wait option.

5.3. Some "interesting” Policies

The two-phase locking policy is obtained by selecting the wait option for read and write
requests, and the wait all option for read/write requests -- the validation option is redundamt.
As noted earlier, the goal of this policy is to avoid aborts if at all possible.

An optimistic policy is obtained by selecting the grant options for read, write, and read/write
requests, and the kill aption for validation requests. In this policy, transactions never walt,
and conflicting transactions "race” to the finish: given a set of conflicting transactions, the
transaction that first requests validation completes, and the conflicting transactions are
aborted.

There are a variety of policies that lie between the two-phase locking and optimistic policies.
in these policies, combinations of wait, grant, die, and kill options are used. For example,
two-phase locking could be modified s0 as to grant a read reguest from a for p even if for
some b, W(b, p) -- although this introduces a — b, a is allowed to proceed immediately, and
it may still be possible to validate both transactions, having b wait on the validation of a
when b requests validation if this case arises (and if this does not cause deadiock). The
options for this policy would be: read - grant, write - wait, read/write - wait all, validstion -
wait.

Similarly, the optimistic policy couid be modified so that the wait option is selected for a
validation request from a with respect to all transactions b ~ a -- the philcsophy behind this
policy might be to retsin the "never-wait™ property of the optimistic policy for the read-
phases of transaction, but 10 wait f necessary at the validation point in order to determine
possible conflicts turn into true conflicts. The options for this policy are: read, write,
read/write - grant, validation - walt.

Finally, policies that select only kil or die options may seem uninteresting, but such policies
could conceivably prove useful in some applications due to their extrems simplicity: for
these policies, the =», =» ., and -+ reiations are unused, and so need not be maintained.
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6. Global Memory Managers

in this chapter the transaction support, query support, and garbage collection functions of
GMMs will be described.

6.1. Memory Managment

The GMM must allocate and de-allocate storage space for objects, maintain the mapping
between the virtual description (ID and version number) of an object and its physical
addresales), and find certain versions of an object given its ID. Since none of thess
probiems seem significantly new (in fact, several existing muiti-version file systems soive
these problems), discussion of such a multi-version object system will be omitted here.

6.2. Transaction Support

During the read-phase of a transaction, upon receiving Mread, the GMM must find the most
recent version of the object requested. If the version number is different than that of the
local copy (if any), the LMM will then read the new version of the object from shared
memory. That the transaction “sees” a consistent database must be ensured by the CC.
The GMM must also attempt to claim space in shared memory for new objects and new
versions of objects, as requested. ‘

During the write-phase, the GMM updates the mapping from virtual descriptions to physical
addresses of each new version or new object as it is written. Then, upon receiving MTend,
the GMM wilt update a write-phase completion list (WPCL), and possibly update a write-
phase compietion counter (WPCC). The WPCC is defined as the largest transaction number
such that the corresponding transaction and all lesser-numbered transactions have
completed their write-phases; the WPCL is defined as the list of transaction numbers greater
than or equal to the WPCC of all such transactions that have completed their write-phases.
This should be made clear by the following example.

Assume that all transactions numbered 1093 and less have compieted their write-
phases, and that the transactions numbered 1095 1008, and 1008 have sieo
completed their write-phases. Then the WPCC is currently 1083, and the WPCL is:

1083, 1085, 1086, 1008.

Continuing the example, upon receiving MTend for the transaction numbered 1100,
the WPCL becomes:

1083, 1095, 10086, 1068, 1100,

and the WPCC remains unchanged. However, upon receiving MTend for the
transaction numbered 1004, the WPCC becomes 1006, and the WPCL becomes:

10098, 1088, 1100.
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The WPCC and WPCL are of use in query support and garbage collection, as discussed
below, and in recovery, as mentioned in Chapter 3.

6.3. Query Support
Suppose, as a query begins, the WPCL ia:
. 1006, 1098, 1100.
At this point, a consistent version of the database can be observed, without any concurrency

 control, by accessing for each object ID the greatest version of the object that is less than or

equal to 1096. This is the most recent version of the entire database that can be guaranteed
to be consistent since, given an object 1D, whether or not there may later be a version 1087,
1089, or a version greater than 1100 of this object, cannot now be determined.

By associating the current value of the WPCC with each query as its query number (QN)
upon Qbegin, and thereafter sending that query the greatest version of each object
requested that is less than or equal to its QN, queries will always observe a consistent
database, without any CC support. )

A possible probiem with this scheme can be illustrated by the following example.

A user executes a transaction, the transaction is successful and is numbered 10086,
and when its write-phase completes the WPCL becomes:

1096, 1098, 1100,

with a WPCC of 1006. But now, if the same user executes a query before the write-
phase of the transaction numbered 1097 compietes, the effect of the user's previous
transaction (numbered 1088) will not be visible!

This problem arises only since write-phases are aliowed to take place asynchronously, which
is highly desirable for efficiency in the kinds of multiprocessor/network applications of
concern here. if the above example represents a true problem, one solution is to reetrict
write-phases t0 be sequential in transaction-number ordér, which may be acceptable in a
centralized system.

in de-centralized systems, though, other alternatives are miore attractive. A acheme involving
asynchronous notification of application programs of the occurrence of certain events (such
as WPCC > 1098) is feasible. Another soiution is to allow queries to "pick™ their own ON --
in the example above, the query could pick the transaction number of the completed
transaction, 1008, as s ON. Then, the GMM could be designed 80 as to reply to Qbegin,
but postpone the reply until the WPCC became greater than or equal to the QN of a given
query, and the LMM couid be designed 80 as to wait for such a reply. However, in order for
garbage collection (see below) to be correct, queries must not be allowed to pick QNs less
than the WPCC. :

Finally, there is another sitermnative, in which the GMM associates a copy of the current
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WPCL with each query as the query begins. In the exampis above, the list 1008, 1008, 1100
couid be associated with the query. In this alternative the GMM finds for each read request
mmmwumm«mmbmmmmmmmw
in the associated WPCL copy, or (2) appears in the associated WPCL copy. This provides a
congistent view of the dstabase since, referring t0 the example above, the CC has
guaranteed that there are no.conflicts between the transactions numbered 1087 or 1080 and
any lesser-numbered transaction.

6.4. Garbage Collection

Each time a new version of an object is created, the immediately lesser-numbered version of
the object becomes potential garbage -- “potential” garbage since there may cusrently be
queries executing that will need to access this version. Whether or not an object is "true”
garbage can be determined by the current minimum value of all QNs, say, min QN. | this
number is greater than or equal to the version number of the new version of an object, the
preceding version can then be garbage-collected, since all current and future queries will
mmn@mdmuoﬂmwﬁhmnmbmmwwmdtomudm
new version.

Note: in the case that WPCL copies are associated with queries, then taking the QN of a
query to be the minimum of its associated WPCL copy, the sbove reasoning still applies.

Garbage can be coliected as s00n as it is generated by maintaining a garbage list (GL) as
follows. The gabage list is a list of (version number, version set) pairs, where a version set
is a set of (object ID, version number) pairs :- i.e., each element of a version set refers to a
particular version of a particular object. If a new version, with say version number NV, of the
object with ID /D is writtan, and OV is the version number of the preceding version
(sssuming there is one), then the GL is updated by adding (/D, OV) to the version set in the
GL associated with version number NV (creating a new version set if necessary). in the case
that the new version is a deleted version, (/D, NV} is also added to this set. Potential
garbage objects can now be coliected as soon as they become true garbage by freeing all
objects in the version sets of the garbage list associated with version numbers NV less than
or equal to min QN, for each new vaiue of min QN. Finally, min ON can be continuously
updated by recaiculation upon each query compietion, or it could be periodically updated.
An exampie is as follows.

Let the GL currently be
(1098, {(1,1006), (2,1001))), (1087, {(1,10086), (4.968))). (1088, {(3,1001)}),

and let min QN = 1098. Now, if version 1007 of the abject with iD S is written, and
mmmmammmmtm the GL bscomes:

(1088, {(1,1085), (2,3001)}), (1007, {(1,1008), (4,968), (8,1050)}), (1088, {(3.1001))).
Later, after all queries with ON = 1008 have compieted, min QN increases, t0 1008
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say (i.e., assume there is still an uncompleted query with QN = 1086). Then, after
garbage-collecting versions 1085 of object 1 and 1001 of object 2, the GL becomes:

(1097, {(1,1006), (4,968), (5,1060)}), (1088, {(3,1001)}).
6.5. Partitioning the Global Memory Manager

Parallelism can be introduced in the GMM by partitioning the set of shared data objects in
some fashion {for example, if there are several secondary memory devices, if the constraint
is made that all versions of an object must be stored on the same device, an object can be
mapped to a partition corresponding to the device on which the object’'s versions are
stored), and by using a process for each: partition to manage storage allocation and the 1D,
version =) physical address mapping for objects in that partition. Furthermore, the GL can
be partitioned in the same fashion: if object p belongs to partition i, potential garbage
versions of p are recorded in garbage list GLi, say. Each GL can be managed by a separate
process, with a message interface between mapping and GL processes, or it the mapping

‘and GL partition schemes are identical, the mapping processes can also perform garbage-

collection. In order to balance free storage among the mapping processes, an additional
process could be used to generate new object 1Ds, with IDs chosen in such a fashion that
each newly created object maps to that partition containing the most free storage.
Altermatively, for computer network applications for example, the LMM couid always first try
object creation via a mapping process that was "close” in the network, with other mapping
processes used if this fails,

The WPCL, WPCC, and QN information are analagous to transaction information for the
CC -- these structures can be managed by a single process, or by several processes
accessing these structures in shared memory.

There does not seem to be any straight-forward way to distribute the WPCL, WPCC, and QN
information in a way that would offer any performance advantages -- this is because these
structures are all intimately connected with the central transaction number counter of the
CC. In the types of proposed systems mentioned in Section 4.6 in which the use of a central
transaction number counter is avoided by using timestamps or other schemes, these
structures are simply omitted. The resuits are that queries must be controlied by the CC
(however, by having queries access sufficiently old versions of the database, queries will
almost never be aborted), and that there do not seem to be any aigorithms for garbage
collection other than heuristic techniques (for example, it might be assumed that any
potential garbage version more than a day oid couid be deleted).
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7. Transaction Processing on Cm*®

In order to (1) deveiop aigorithms for the concurrency control designs previously presented,
(2) experimentally verify the correctness of these algorithms, (3) investigate the fimitations of
multiprocessor systems for transaction processing, and (4) demonstrate the ussfulness of the
policy module approach for. policy experimentation on a complex system, a transaction
processing system was implemented on Cm*/Medusa. In this chapter this system is
described, the results of the experiments are presented, and some implications of these
results are discussed. The concurrency control algorithms are given in Appendix N.

7.1. Overview of Cm*/Medusa

Cm*, a distributed multi-microprocessor designed and buiit at Carnegie-Melflon University
(see [Swan et al 77]), currently consists of 50 computer modules (Cms) and five
communication controllers (Kmaps), as shown in Figure 7.1. Each Cm consists of a DEC
LSI-11 microprocessor, primary memory of 64K or 128K bytes, various devices, and a joca/
switch (Slocal). The Slocal contains relocation tables that allow each memory reference to
be mapped either to memory or devices on the assaciated LS!-11 bus (a /ocal reference) or
to be passed to the Kmap for the ciuster (a non-foca/ reference). Each Kmap is a
microprogrammable microprocessor specially designed as a communication controller, and is
responsible for mapping non-local memory references either to another Cm in the same

i | i |
Kmap1 Kmap2 Kmap3 Kmap4 Kmap$

Cm1..Cm10 Cm11...Cm20 Cm21...Cm30 Cm31...Cmd40 Cmat..

w intercluster bus "'T" i
— maphbus 'LSI-H-SIocd r—r— !
— LS11buw . ! Mp device . |

L------------J

Figure 7.1. Cm*® Architecture
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Figure 7.2. Medusa Task Force Structure

cluster (an intracluster reference), or through another Kmap to a Cm in a different cluster
(an interciuster reference). However, because the Kmaps are microprogrammabile, this
mapping can take piace in many. different and complex ways. In particular, it is possible to
microprogram key operating system communication primitives in the Kmaps.

Medusa (see [Outsterhout et al 80]) is one of two operating systems designed and
implemented for Cm* (the other is StarOS -- for more detailed descriptions of Cm®, Medusa,
and StarOS, along with a variety of information regarding Cm°-related ressarch, see the
resesarch review [Jonés and Gehringer 80]). The two primary uses of the Kmaps under
Medusa are for message communication and address mapping -- these functions are
implemented in the Kmap microcode. Message communication in Medusa takes place using
objects calied pipes, and is an extension of the Unix pipe mechanism (see [Ritchie and
Thompson 74]). Here, it need only be noted that the extensions are such that the
assumptions of Section 3.1 regarding communication between subsystems can be satisfied
using mechanisms aiready provided.

Medusa provides a structure called a fask force to implement operating system functions and
user programs. A task force is a collection of activities (or processes), each of which can
reference a distinct collection of private objects, such ss code pages, and alil of which can
reference a single collection of shared objects, such as communication pipes or shared data
pages. Access to an cobject is gained through a descriptor list; thus, for each task force
there is a shared descriptor list {SDL), and for each activity there is a private descrigtor et
(PDL). This task force structure is shown in Figure 7.2. The mapping of an access 10 an
object through a desciiptor Nst is supported by the Kmap microcode; in particuler,
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descriptors are cached in the Kmap, so that access 10 a non-local object can usually
proceed without the extra step of fetching a descriptor from a descriptor list. In the case
that the obiject is local to the activity accessing the object, a simple access (i.e., an access
produced by an LSI-11 instruction) can proceed directly through the Smap without involving
the Kmap. Because of this, all code and private data pages are typically made local (i
poasible) for performance reasons.

Medusa supports various operating system functions through a collection of task forces
called utilities. Utilities are special kinds of task forces in that, among other differences, a
deacriptor list of input pipes to the utilities, called the utility descriptor list (UDL), is stored in
each Cm. Thus, any activity running on any Cm can invoke an operating system function by
sending a message to the utility implementing that function through the appropiate pipe in
the UDL. Of the utilities provided by Medusa, the only one that was used during the course
of the experiments described below was the file system (other utiliies were used during
startup and after the compietion of experiments). The file system utility handles all input and
output devices, and pravides a hierarchical file structure.

7.2. The Transaction Processing System

The transaction processing system was impiemented as a single task force of eleven
activities: a master activity, eight transaction-processor activities (TP1, TP2, ..., TP8), a CC
activity, and a GMM activity. The SDL/PDL structure of this task force is shown in Figure
7.3. For the shared Cm memory system (see below), the SDL shown in the figure wes
extended to include 48 descriptors for shared Medusa (40868-byte) peges.

All experiments took place using a three-ciuster partition of the system. In each case, all
activities (including utility activities) were aliocated their own Cm, and all code, stack, and
data pages were local. Since Medusa did not support context swaps, activities were always
resident in their respective Cms. The data objects supported at the virtual internal level were
512-byte pages.

The CC activity implemented all functions needed by the CC paradigm, and & policy module
providing all basic policies was used, with deadiock detection and request queusing
extensions as described in Section 5.2. At the start of each experiment a policy was chosen
by sending the CC activity a message containing the options to be used by the policy
module. For the policy experiments, the following four policies were uesd.
locking: read, write, read/write - wait (the validation option is redundant).
lock-opt: read - grant, write - wait, read/write - wait afl, validetion - wak.
opt-lock: read, write, read/write - grant, validation - wel.
optimistic: read, write, read/write - grant, validation - ki,

For the throughput experiments, the locking and optimistic policies were ueed.
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FCB = file control block

Figure 7.3. Transaction Processing System Structure

The GMM activity used the first scheme for query support of Chapter 6. The ID, version
=) address mapping used by the GMM, along with the WPCL, GL, QN table, etc., were
stored n primary memory.
The structure of the transaction processor aclivities was as followe:
transaction/query generator - generate random ineertions, deletions, and Queries.
RcdM - implement a file structure based on a collection of 512-byte pages as
shown in Figure 7.4 -- this RcdM attempted to optimize storage use by packing new
records into existing record pages adjacent under the leaf page of the first index ¥
. "
LM - local memery manager -- all iocal memory that was avallable alter allocelion
for code, data, and stack was ueed as LMM cache space, with a resulting masiemum .
mmdazmz-mm(nummmmmmmm
MNMMW*LRUMMVmeN
mmmmmmummmum\m
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Figure 7.4. File Structure Used by Record Manager

and executed random insertiona, deletions, or queries to find one tuple, based on Mmesssges
from the master activity giving the relation name, operation, and miscellaneous additional
parameters.

In all of the experiments, a previously created database consisting of 500 tuples in three
relations was used. ARhough the RcdM supported variable length tuples, for the experishents:
only fixed size tupies were used. The three relations were as follows: m.AM4
domains, of lengths 10, 10, 3, and 10, with indexes on tuple IDs and the frit domein;
relation B had S domains, of lengths 10, 10, 1, 2, and 10, with indexes on tuple 106 B the
first domain; mcmamammmuammamm

Tuple 108 were generated by incrementing a counter, mwmw‘ﬁh
reversed binary dighs of their D8 for the reasons mentioned in Agpéndti 1. K Wil 0ok
mnmmmdnmmmmmﬂ
WP 1D, and Sron wsing: Tis value &5 NG Sosk- 1oL S FUREonY!
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the contants of the tuple. A query to find one tuple first randomiy selected a relation (any
relation equally likely), then selected an index (any index for the reiation equalily likely), then
selected an index value (any index value equally likely), and then found and retrieved the
first tuple with a corresponding domain value greater than or equal to the key if there was
such a tuple, otherwise the tuple with the maximal vaiue for that domain was retrieved. A
deletion proceeded in the same fashion as a query, except that the retrieved tuple was
deleted. If a transaction failed due to a conflict, the master activity always immediately sent
a message to the transaction processor activity to repeat the transaction. Below, this event
is referrad to as a -restarnt.

Although this sytem used artificially generated transactions, it was based on an earlier “real”
system (i.e., usable-for applications). This system relied on the unique identification of tuples
to support interactive examination and modification of the database without user interaction
during the course of a query or transaction. Although the only transactions defined were
insertions and deletions, and all defined queries were queries to find a single tuple (in
various ways), the user was generally given the appearance of exciusive interactive access
to the database by "remembering" the state of the user, in particular the contents and the
unique identification of the most recently accessed tuple, between transactions and queries.
Thus, the master activity was designed to simulate to a limited extent the behavior of &
number of user interfaces of this type. In practice, the master activity would be replaced by
a collection of user interface activities, as shown earlier in Figure 2.8.

In addition to driving the transaction processor activities, the master activity collected a trace
of the experiment. In order to see what information was collected during a trace, part-of &
trace file is shown in Figure 7.5.

7.3. Maximum Throughput Experiments

As there are few multiprocessor transaction processing systems in existence, their imitations
are of interest. Using the locking and optimistic policies, experiments were performed to
investigate the maximum throughput as the number of transaction processor activities was
increased. In these experiments 100 insertions or deletions were performed, either equally
likely. Shared memory was accessed by random file access through the Medusa file system.
The master activity, upon receiving a compietion message from a transaction processor
activity, aiways immediately sent a message to begin a new transaction (if there were any
trangactions ieft t0 perform). The observed throughputs are shown in Figure 7.8

Separate experiments with the Medusa file system determined that the file system activity’
became a bottienack for this system as the number of transaction processors increesed. In
order t0 see the effects of removing this bottieneck, a new system was developed in which
the unused memory of four 128K Cms was used as shared memory, accessed through the
SDL (the lile system was still used by the master activity to read clock vaiues and to write
the trace file). Reads or writes of 512:byte pages were performed using a block Mmove
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time

transaction processor number cor:mund

| .
result
10:06.468 TQG 1:insert 1108
10:08.61 TQG 1: read conflict has occurred, aborting

400
10:06.96 TQG 1:ingert 1108 —— ,ostart

10:‘(’)6.98 TQG §: 0K success

1174

10:07.08 TQG 8: wait 7 trans"nction Jjust completed sent
10:07.06 TQG 2: OK 11 read messages to GMM,
2015 4 actually read 7 pages,
10:07.117TQG 2: wait 3 wrote 4 pages
10:07.15TQG 7: OK ’

1028

10:07.18 TQG 7: wait 3
10:07.20 TQG 8: select A
10:07.23 TQG 8: insert 1108
10:07.35 TQG 3: select C
10:07.36 TQG 3: delete 13871
10:08.26 TQG 1: 0K

1333

10:08.30 TQG 1: wait 4
10:08.80 TQG 3: OK

1164

10:08.83 TQG 3: wait 3
10:08.86 TQG 8: OK

1183

Figure 7.5. Part of an Experiment’s Trace

operation provided by the Medusa Kmap microcode. This system was not believed to be
unrealistic, since it is possible to transfer data to disks at the maximal Kmap block move rate
of approximately 300 512-byte blocks/second. The observed throughputs for this new

system are shown in Figure 7.7.

Theee experiments clearly show that significant increases in throughput are possible for
transaction processing using multiprocessor architectures, even when the database is highly
shared. However, there are two limitations on the increases that can be achieved: shared
memory bandwidth and transaction conflict.

With respect 10 shared memory bandwidth, using the Medusa Rle system, no incresses in
throughput couid be achieved with more than four transaction processors. The bottleneck
wouild have occurred even earlier if objects were not cached in local memory: in the cese of
the four transaction processor locking experiment using the file system, out of an averige of
14.04 resd requests to the GMM, an average of only 5.72 pages had to be read from ghived .
memory, giving a "cache-hit" ratio of 50% (the meaning of cathe-hR here i somewhnit
mmmmummmmmuammhmwmmmm
messages t0 the GMM take place). Tmmommbrﬂw
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Other approaches to reducing the shared memory bandwidth limitation rely on RcdM desiga.
As noted above, the RcdM used for these experiments attempted o optimize storage by
packing records into “nearby" record pages if possiblie (this RcdM was earlier developed on
a system in which secondary storage was at a premium). The resuit is that for some
transactions, a large number of pages were examined (for the four transaction processor
“..¢king experiment using the file system, the maximum number of read requests to the GMM
for any one transaction was 23). A RcdM using a simpler record storage allocation scheme
would encounter the shared memory bottieneck at a later point; however, storage would be
utilized less effectively, and queries could be more expensive. As noted in Appendix {, there
are many alternatives in RcdM design, and it is a field of on-going research.

The most direct way to approach this limitation, though, is to increase shared memory
bandwidth. in the experiments using shared Cm memory, for example, a dedicated disk
controlier could be used on each shared memory Cm, with the primary memory of the Cm
used as a large buffer. This example illustrates two techniques: provide more parafielism in
the path to shared memory (muitipie disk controllers), and use intermediate ievels in the
memory hierarchy (primary Cm memories).

The transaction conflict limitation is more difficult to avoid, since it has the effect of making
additional parallelism useless: if there is a conflict between two transactions, they must (in

the general case) proceed sequentiaily.

Again, RcdM design plays an important part. M records were not indexed under their
reversed IDs in these experiments, there would have been conflicts between aimost every set
of concurrent insertions t0 the same relation. On the other hand, a RcdM using a simpler
record storage allocation scheme could have had fewer conflicts since the read set sizes
would have been smalier.

There is also a probiem at the virtual internal level: [f conceptual entities are mapped to
larger internal entities, conflicts can occur between transactions that do not conceptually
conflict. Given the framework of Chapter 2, the only solution is to decresse the granularity
of the objects provided at the internal level. Other approaches rely on introducing
application-dependence into the concurrency control 30 that larger ciasses of transection
histories are allowed (e.9.. see [Kung & Papadimitriou 79]), but are beyond the scope of this
work.

The effects of trangaction conflict can be seen in Figures 7.6 and 7.7, particularly in the case
of the optimistic policy -- for the optimistic policy, when a transaction is validated, alf
conflicting transactions are aborted. in these experiments, the degree of concurrency
increased as the number of transaction processors incressed, and 30 the probabilty of
confiict incressed as well. This eflect can be seen as an increass in the average number of
restarts for each transaction, as shown in Figures 7.8 and 7.9. Note that restarts aocur
much less using the locking policy, since a traneaction is aborted only i scheduling i
request would cause deadiock.
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For the locking policy, increasad transaction conflict results in increased waiting due to
scheduling. However, as concurrency increases, there is aiso increased waiting on shared
system resources (for this system, these are the file system, the Kmaps, and the master,
GMM, and CC activities). The average execution times (including waiting times) for
transactions that were successful on the first attempt under the locking and optimistic
policies are shown in Figures 7.10 and 7.11. Since these curves are almost identical, and
under the optimistic policy there is no waiting due to scheduling, it must be concluded that
for this system waiting due to scheduling is negligible as compared to waiting on shared
system resources. This explains why the locking policy generaily gave higher throughput:
since waiting due to scheduling is negligible, the effect of restarts dominates. In those three
cases in which the optimistic policy gave slightly higher throughput, there was by chance a
combination of less total work to perform using the optimistic policy (where total work was
measured by the total number of shared page accesses) and a relatively small ditference in
restarts for the two policies. This can be seen by comparing Figures 7.12 and 7.13 with the
previous figures.

7.4. Policy Experiments

Using a policy module that provides many policies, it is easy to investigate the performance
of policies on a complex system. Using the focking, lock-opt, opt-lock, and optimistic
policies, a number of experiments were conducted as a demonstration. The experiments
were as follows.

1. The shared Cm memory system was used, with eight transaction processors.
2. 500 queries, insenioris. or deletions were performed.

3. Transaction processor activities waited a randomly generated amount of time
between transactions and gueries, from 0 to 2 seconds.

4. The probability of a query was 1/2, and insertion and deletion probabilities were
each 1/4.

5. Three different experiments with three different inital databases were conducted
for each policy by varying the initial seed for the random number generator.

The results of these experiments are shown in Table A.

Since for the Cm* system the effect of waiting due to scheduling is negligible, the iocking
policy uniformly gave the best throughput, as expected. However, in the first set of
experiments, the difference in transaction conflicts betwsen the locking policy and the other
policiea was less than in the latter two sets of experiments. The result was that in this first
set of experiments, both the optimistic and lock-opt policies gave better average response
times than the locking policy, with the lock-opt policy giving the best response tima -- the
incressed restarts were not enough to cancel out the decreased response time resulting
from less scheduling. in the latter experiments the dilference in restarls was grester, and




B A AT

ML AR
’

TRANSACTION PROCESSING ON CM* 50

since response time includes the time taken by unsuccessiul transactions, the locking policy

gave the best response.
EXEC. EXEC. EXEC. EXEC. .

NOMBEROF PAGE TIME TME TME TME  RESPONSE
poucy Run  ResTaRTs® accesses®® F1s® PE® R Y RF® e’ TwougeuT®
locking 1 02 338181 .60 82 I8 *F 81 5.87
lock-opt 1 03 331,159 55 559 .78 .81 57 577
opt-lock 1 08 383,186 62 .74 B85 89 .67 5.62
optimistic 1 05 384,164 58 64 88 41 60 5.73
locking 2 01 378171 57 74 M F 58 5.85
lock-opt 2 05 379,171 57 59 84 .79 .61 5.75
opt-lock 2 07 406,184 680 63 88 .72 65 5.62
optimistic 2 05 354,158 55 61 90 .56 .58 5.60
locking 3 02 408,176 58 6t 80 .75 .59 573
lock-opt 3 08 404,167 57 65 80 82 63 5.55
optock 3 07 411,194 58 73 .78 67 63 5.53
optimistic 3 08 400,192 60 58 .77 58 .68 5.51
A Aversged over et completsd Uansactions or queries.
B shared pages read. shared pages wrilen.
cm fist time success (including queries), FTF = first time fallure, RS = restart success, AF = restart

Dﬁmhm .
Ecwummaqu«wm.
'Didnotm.

[

Table A. Policy Experiments
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8. Conciusion

Now that the four-level design framework, concurrency control paradigm, global memory:
manager designs, and Cm* experiments have been presented, various issues conceming this
approach to transaction processing system design can be considered in more detall. in this
concluding chapter, first, various of these issues are considered in tum. Next, conclusions
drawn from the implementation experience are given, and implications of the Cm*
experiments are discussed. Finally, some directions for future research are identified.

8.1. On the Use of Physical Pointén

Currently, it is common practice to use physical pointers to data objects in database record
managers. The efficiency advantage is that, given a pointer to an abject, the object can be
retrieved without first looking up the physical address corresponding to the pointer.
However, this advantage disappears as soon as a memory hierarchy is introduced. Using a
memory hierarchy, an object can possibly be stored at several locations, and so some form
of lookip is necessary in any case. It seems clear that memory hierarchies are necessary in
alt but centralized unshared database applications.

8.2. On Multi-Version Objects

Once it has been decided that objects will be referred to virtually, and that ID =) address
mappings will be maintained, there are clear advantages to extending these mappings to
support multi-version objects. First, as observed in the introduction, it is common in
transaction processing systems to have large.queries. Without multi-version objects, queries
can observe consistent database states only with concurrency control support. It is clearty
undesirable to abort large queries, and so some policy giving priority to large queries must
be used. Alternatively, using a hierarchical locking concurrency control, the query could
begin by read-locking large portions of the database. In either case the result is that a
large portion of the database cannot be modified by transactions while the large query is in:
progress. With multi-version objects, using one of the schemes for query support presented
earfier, queries do not affect concurrent transactions (except perhaps by freezing garbage-
collection -- see below). Some other advantages to the use of multi-version abjects are that
in distributed systems version numbers can be used to determine when copies are "out-of-
date” (as in the Cm® system), and that versions (together with a write-phase-completion let,
counter, or similar information) form a basis for recovery at the memory management level.

An objection that has been raised to multi-version object schemes is that extra storage is
necessary. If oid versions are quickly garbage-coliected, this does not in general present a
dmiﬂcaMprouom.andnnnionnumbqnmmmmedbycompmﬂymm
such garbage-colection is possible: a garbage-collection algorithm was designed and
implemented in which old versions are freed at the first point at which it can be guarantesd
that no future transaction or query will access that version. &t is still possible, though, for
garbage-collection to be frozen for a long period of time due t0 the execution of a lange
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query. However, in single-version schemes, many wansactions weuld :be forced:to. wait - #or;
the compistion of the large query, whereas in 2 mulli-version scheme,. all transactiong cen
continue to run until storage is exhausted. Also, it is possible to transier old versions 10
tortiary memory, as noted earfler in Section 3.4 -- this would aliow the lerge query 0
mmmmwnammm).mmmmmm

8.3. On General Concurrency Controls

Having removed query support as & concurrency control function, the problem of designing
an efficient general-purpose concurrency control is greatly simpiified. Nevertheless the
question remains whether buiiding record manager dependence into the concurrency control
can greatly improve efficiency. In terms of run-time efficiency, this question can probably
never be answered in a final way, since any modification of a transaction processing
system’'s access structures could in principle introduce a variety of new specialized
concurrency controls, all of which would have to be compared to many general concurrency
controls. Furthermore, even given a demonstrably good specialized concurrency control for
some access structure, there are currently no techniques for generalizing the concurrency
control to the case in which the access structure is combined with other structures. For
example, none of the special locking protocols developed for B-trees (see {Samadi 78],
{Bayer and Scholnick 77}, [Miller and Snyder 78), [Ellis 80], or [Lehman and Yao 81]) can be
applied directly to the record manager used in the Cm* system -- although this record
manager uses B-tree indexes, there is no giobal tree structure, since the index records of
several B-trees can all point to the same tuple. So regardiess of the run-time efficiency of
specialized concurrency controls, there are clearly development and maintenance
advantages for general concurrency controis.

Based on the Cm* experiments, it seems that general concurrency controls can provide
enough concurrency to effectively utilize paralielism, giving significant increases in
throughput. 1t is important to realize, though, that these resuits depend on the fact that a
record manager was used in which conceptually small iransactions were usually physically
small as well, and in which conceptually non-conflicting transactions were usually physically
non-conflicting. Since such properties are highly desirabie for record managers in any cese,
one cannot seriously object to the fact that the efficiency of a general concurrency control’
depends on these properties. However, because the use of record managers with these
properties is so important in the four-level architecture, eartier work on the problem of
designing general index structures for such record managers is reported in Appendix I.

8.4. Implementation Experience

Two conclusions can be drawn from the Cm*® transaction processing system implementation
experience. First, the four-level framework really is valuasble in the development of
transaction processing systems. in the case of the Cm* system, the record manager wes
earlier deveioped on the DEC PDP10 architecture under an operating system (TOPS10)
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compistely difierent from Medusa, using a different concurrency contral and a different
MemMOry Mmanager (the concuirency control was an early implementation of the optimistic
method, and the memoary manager supported only single version objects). Luckily, dislects
of & common language (BLISS -- see [Wulf et al 71]) were available on both systems, but this
should often be the case lor high-level languages. The only madifications necessary t0 the
original record manager, other than those due to differences in the ianguage dislects, were
due t0 a lack of information-hiding in the original design -- the original record menager
managed its own local page memory as a stack of pages and a few temporary pages. By
replacing these pages with pointers to pages and by moving local memory management to
the LMM, a more general design resulted. In fact, the modified record manager could be
used on both systems, and was actually debugged and tested on the POP10 system. Since
the record manager was by far the most complex subsyatem, this speeded develiopment time
immensely.

Second, it a concurrency control module providing all functions needed by the paradigm is
implemented first, it is then easy to implement any particular general concurrency control as
a policy module. In the Cm* system, the policy module providing all basic policies with
deadiock detection and request queueing consisted of 72 lines of (BLISS) code. The module
providing all functions needed by the paradigm can be thought of as a kernel in the HYDRA
sense: the HYDRA operating system kernel was defined to be a set of faciiities "which are
both necessary and adequate for the construction of a large and interesting -class of
operating environments® [Wult ét al 74]. By replacing "a large and interesting cless of
operating environments” with "all general concurrency controis”, a general concurrency
control kernel is defined.

8.5. Implications of the Cm* Experiments

One conclusion that might be drawn from the Cm* experiments is that, since the effect of
waiting due to scheduling was negligible, future investigations of concurrency controls
should concentrate on locking-style policies. This conclusion is tentative at best: Cm* is
currently a unique system, partly multiprocessor, partly computer network, and it is not at all
clear that this resuit applies to dissimilar systems. Also, in these experiments individual
processors were not multiprogrammed, but the expense of scheduling could be drastically
increased if scheduling required comext swaps. However, using a concurrency control
policy module it is easy to perform initial experiments on any system to determine if this
same situation hoids, and 30 questions regarding the general applicability of this result seem
somewhat unimportant. For exampie, it might be the case for some system that the effect of
restarts was negligible (due to extremely high cache-hit ratios on restarts, say), but that
walting was expensive (due to context swaps. say) -- after having determined this, policy
developers and maintainers for this system would simply concentrate on policies that avoid
scheduling. '

A more far-reaching conclusion can be drawn from the fact that the performance difierences
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among the various policies tested were insignificant when compared-to .the periermance:
differences using the two types of shared memory. The implication ia thet long-term
research in transaction processing system design should concentrate more on lower-level
systems problems, such as increasing memory and communication bandwidths, than on
concurrency control problems. A concurrency control policy module, on the other hand, can
be seen a3 a maintenance and “tuning” tool that is most useful after & transaction
processing system has been developed.
o

8.8. Further Research - : i

Several areas for further research can be identified. First, here the cass in which the
concurrency control has near-minimal information about transactions has beén.gXamined:
the concurrency control is informed only of the ID of each abject as it is accessed, and
whether it is a read or write access. It has been argued that this approach works well in
most transaction processing systems (given good record manager design and concurrency-
control-less queries), and that this approach has the advantage ol separating concurrency
control design from database design. Nevertheless there are many systems in which this
approach is unacceptable. For example, some databases used for artificial intelligence
applications consist of numerous highly interconnected objects, and currently it does not
seem possible in these systems to maintain global consistency with small independent
transactions. Also, in network database systems, it may be desirable to transfer function
requests among nodes (e.g., "insert tupie T in relation R") instead of data. Although an
access-driven concurrency control could be used at each node, a function-driven
concurrency control could prove necessary at the global level. A problem for future
research then, is the generalization of the policy approach to those cases in which additional
information is available to the concurrency control.

Another issue that has not been expiored here is the manner in which copies of objects are
handied in distributed systems. The concurrency control design that has been developed
here applies directly to the case in which an object and all of its copies are identified as a
single object, and it also applies to the case in which each copy is considered 10 be a
distinct object. In the iatter case, though, the concurrency control can take advantage of the
knowledge of which objects are copies. This approach has been important in the
development of robust concurrency controis (e.g., the voting aigorithms of [Thomas 79)).
This can be seen as another exampie of a case in which it is desirable t0 make additional
information available to the concurrency control.

Next, although the policy module approach can greatly reduce the need for performance
analysis of concurrency controls, it certainly does not eliminate . For example, in order t0
automatically switch to the optimal concurrency control method bssed on performance
monitoring or usage statistics, a deeper understanding of the performance characteristics of
siternative concurrency control methods is necessary.
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Finally, & concurrency control can be used fo maintain consistency. whils- 8. ransaction
proceasing system is in operation, but 2 recovery subsysiom-is HCesSary. 10 resiom an.
inconeistent databese to & consistent state. Thus, the concurrency control and recowsry
subsystem are in this sense equally important. Here, concwrency and recovery problems
mmmmmm,mwlmmm in the reed
phase, no recovery support is necessary, since no shared cbject is modified; in the wrile
phase, no shared object is read, and 30 no concurrency conirol interaction ls necessary,
with the exception of informing the concurrency control when the new versions of objects
written in the write phase can be accessed by other transactions. It is in exactly this case
that concurrency control and recovery interact. For example, it may be desirable for
recovery reasons not to make new versions of objects accessible by other transactions until
they have been written to duplexed disks, say. A solution is to assign the recovery
subsystem responsibility for informing the concurrency control when new versions of ‘objects
are accessible. In any case, alternatives in communication between recovery subsystems

and concurrency controls, and application of the policy approach to recovery subsystem

design, are problems for future research.
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Appendix |. Design of Record Managers.

As noted in Chapter 1, in practice, most transactions are concepiually small. uum‘

is organized as a collection of pages and the record manager can be designed se that &

" conceptually small transaction is usually physicaily small as well (l.e., accesses & amel

number of pages), then concurrency control at the granularity of pages will be appropiate.
One probiem in designing the database 30 that conceptually small transactions are usually

physically small is that various search structures may be needed in order to support. efficient -

queries, and these search structures will have to be periodically updated as transactions
modify the database. in order to see how a record manager can be designed so that search

structures are kept up to date while still keeping transactions physically small, in this

appendix an outline of a record manager will be presented as an example. This record
manager does not presuppose any particular data model; in practice, any given data model
would be supported at a higher record management level. Note that this is just an example,
and that many details have been omitted; there are many aiternatives in record manager
design, as presented in numerous textbooks (e.g., see [Wiederhoid 77], [Date 77), or [Uliman
80]) and eisewhere; furthermore, this is a problem of on-going research.

Although there are many data modeis that can be used at the conceptual level (the most
popular being relational, hierarchical, network, and entity-relationship), all of these data
models can be realized as collections of files of records. A record of type (type, type,, ...,
type,_,) is an element of domain, x domain, x ... x domain,, ,, where each type, is some
primitive type (e.9., mmmgotc).andmhdomam,isﬂnmofdlmonm
type, A file is a set of records all of the same type. The various data modeis result from
decisions on whether or not pointers to records or files are aliowed as primitive types, and i
they are allowed, restrictions on their use.

it is useful for a variety of reasons to have a means of referring to existing records without
referring to their locations (at the virtual internal level), for use as record pointers, for
example. Therefore, let sach record have a unique record /D. These can be generated by
the Mname facility of the GMM. The advantage of not referring explicitly to a record’s
location (in terms of keeping transactions small) is that records may be moved' for storage
allocation purposes without requiring a large number of pointer modifications.

The basic operations defined on a file are inserting a new record, deleting an oid record
given its ID, and retrieving a record given its 1D (assume for simplicity that a record update ie
handied by a deletion of the record to be updated followed by an insertion of the updated
racord. however keeping the oid record D). The problems now are (1) to find space in
some page for inserting a new record, (2) to reciaim the unused space after a record has

been deleted, and (3) to find a record given its ID. One structure that solves all of theee -

problems nicely is the B-free [Bayer and McCreight 72], of which there are many variants
(see [Comer 78] for a survey). Assuming that several records can be stored per page, & can
hlu.dhﬂib”by(ﬂmdnhﬂtnﬁhﬁxdmmmmmmm
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using the B-tree storage aliocation scheme for records, that is, treating pages contaliing -
records as the leaf pages of the B-tree structure. With respect to (2), this means thet .
storage will be utilized effectively by sometimes rediatributing records among adjacent peges
(adjacent in record ID space), creating or deleting pages as necessary. ln the case that
several records cannat be stored per page, groups of pages can be linkec - _.ather, and the
group treated as one large page, simulating the simpler case.

The B-tree structure has the properties that storage is utilized effectively (there is a
guaranteed minimum utilization of 50%, 68%, or more, depending on the variant, with
typically much higher utilization), that few pages are read in finding a record given its 10
(typically, 3 or 4, depending on page size and number of records), and that usually only one
page is modified for an insertion or a deletion (in the case that saveral records can be stored
per page).

Note on the generation of record IDs: in the case that there are many concurrent insertions,
it is not desirable that newly generated record IDs be close in record ID space, since
otherwise there would be many conflicts. If record IDs are generated by using the current
time or by incrementing a counter, this could be a problem, and a scheme to handie it is o
index the record with ID /D under F(/D), where F is some "randomizing” function, and then
later find the record by searching for F(D). A simple example of an F
is Fla, 2" +a, 2"24 . +a) = 82" +0,2" %4 .40, that is, reverse the binary digits of
the record ID.

The above structure is all that is needed in many database appiications. Thess include
some network and hierarchical applications in which all records are found by starting from a
root record and then foliowing pointers. However, if a pointer to a record is not available,
finding a record given its ID is not a particularly useful operation. In such applications (for
example, relational databases), secondary indexes may be needed for query support.

For the record manager described below, secondary indexes of the following kind will be
supported.

1. There are index records of the form
keyg, key,, ..., key,. ., record ID,

where ey, is an element of a finite totally ordered set domain, K is a
constant, and record /D refers to a record (in the file) with these values as
some of s fields. '

2. it is desired fo retrieve records based on Qqueries of the form

min, S key, S max, 0SISK-1,
l.e., range queries.

mmam.mmumwumm>mu%
of the same properties as B-tress has been investigaied In [Robindon 81]. ' The resuiiiy
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structure was named the K-D-8-free since it combines propersies of K-D-trees [Rentiey 78]
and B-tress. A survey of data structures for range searching appears in [Bentisy and
Friedman 79]. The K-D-B-tree structure will now be presented.

Define a point to be an element of domain, x domain, x ... x domain, ., and & region %
be the set of al points (x5 x,, ... x.,) satislying

min, S x;< max,, 0€i LK1,

for some collection of min, max, € domain, Points can be represented most simply by
storing the x, and regions by storing the min, and max,

Below, it will be required that certain regions be disjoint, and that their union be a region --
thus the strict inequality on the right hand side of the region definition above. However, it
will also be required that the union of certain regions be all of domain, x domain, x ... x
domain, ,. It is therefore necessary to create for each domain a special element 00, which
is greater than all elements of domain, and to allow the max;, to assume these valies. It
is also convenient to define -0, as the minimum of domain,

Like B-trees, K-D-B-trees consist of a collection of pages and a variable root 1D that gives
the page ID of the root page. There are two types of pages in a K-D-B-tree.

1. Region pages: region pages contain a collection of (region, page ID) pairs.

2. Point pages: point pages contain a collection of (point, record ID) pairs,
where record ID refersto a database record. The (point, record iD)
pair is in fact an index record.

The lollowing set of properties define the K-D-B-tree structure. The algorithm for range
queries given below depends only on these properties, and the algorithms for insertions and
deletions are designed so as to preserve these properties.

1. Considering each page as a node and each page ID in a region page s a
node pointer, the resulting graph structure is a multi-way tree with root root
ID. Furthermore, no region page contains a null pointer, and no region
pege is empty (note that this, together with the fact that point pages do not
contain page IDs, means that the point pages are the leaf nodes of the
tree).

2. The path length, in pages, from root page 10 leaf page is the same for all
leaf pages.

3. in every region page, the regions in the page are disjoint, and their union is
& region. '
4. It the root page is a region page (R may not exist, or if there is only one

page in the tree it wilt be a point page), the union of its regions is domain,
x domein, x .. X domainy,.
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8. if (region, child ID) occurs in & region pags; and the child page relewed -
by chiid ID is a region page, then the union of the regions in the child page -
is region.

6. Referring to (5), if the child page is a point page, then all the points in the
page must be in region.
Figure Al illustrates an example 2-D-B-tree.

A range query can be expressed by specilying a region, the query region. It is convenient to
think of regions as a cross-product of intervals Iy x 1, x ... x I, ,. i some of the intervals of
a query region are full domains, the query is a partial range query; if some of the intervals
are points and the rest are full domains, the query is a partial match query; i all of the
intervals are points, the query is an exact match query.

The aigorithm to output all records satisfying a range query specified by query region is as
follows.

Q1. It root D is the null page ID, terminate. Otherwise, let page be the root
page.

Q2. It page is a point page, then for each (point, record /D) pair in
page with point a member of query region, retrieve and output the
database record with 1D record ID.

Q3. Otherwise, for each (region, child ID) pair in page such that the
imersection of region and query region is non-empty, set page to be
the page referred to by child 1D, and recurse from (Q2).

Next, for insertions, it is necessary to define the splitting of a region along element x, of
domain. Let the region be Iy x I, x ... x I, .. ¥ x, € I, the region is not changed by
spiitting. Otherwise, let 1, = [min, max)); spiitting the region results in two new regions:

-
s Ny
edoic

1 Igx .. x [min,x)x ... x1,,
2 Iyx .. x [x,max)x ... xI,,.

Region (1) is calied the /eft region and region (2) the right region. if x, € I, since x, < min,,
the region is said to fie to the /eft of x; it x, 2> max, the region is said to lie to the right of
X, A point (Yo ¥y - ¥x.o) 18 88id t0 lie to the Jeft of x, it y, < x, and to the right
of x, otherwise.

A point page is spiit along x; by creating two new point pages, the /eft page and the right
pege; then transferring all the (point, record ID) pairs in the page to either the left or right
page depending on whether point lies to the left or the right of x;; and then defeting the oid
A region page is spiit along x, by creating two new region pages, again called the ik page
and the right page; filling thess pages with regions derived from the oid region page; and




Figure A1, Example 2-0-8-Tree

then deleting the oid pege. This procedure takes piace as follows. Forueh
(region, page ID) in the oid region page:

, ﬁw P T




72 DESIGN OF CONCURRENCY CONTROLS FOR TRANSACTION PROCESSING SYSTEMS

St. W region les to the left of x, add (region, page ID) to the leit
page. |
S2. It region lles to the right of x, add (region, page ID) to the right
page. ;
S3.  Otherwise: - R H

S3.1. Split the page referenced by page /D alonq x,, resulting in pages with iDs
left ID and right 1D.

$3.2. Split region along x, resulting in regions left region and right region. c
S3.3. Add (left region, left ID) to the left page, and (right region, right ID) to the .
right page. 4
Note that this prooedun is recursive due to (S3.1).
| The algorithm for inserting an index record (point, record ID) is as foliows.

; I1. ¥ root ID is null, create a point page containing (point, record D), set
i root ID to the ID of this page, and terminate.
!
|

12. Otherwise, do an exact match query on point, which finds a point page
that point should be added to if the K-D-B-tree structure is o be
preserved. If point is already in the page, do something special (ke
generating an error, or modifying pointer fields in existing datsbase
records), and mmlnm

3
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v 13. Add (point, record ID) to the point page. if the page doea not ovuﬂuw
. terminate. Otherwise, let page be the point page.
3 I4.  Let the 1D of page be oid ID. Pick a domain, domain, and an element

X ‘x, in this domain, such that page split along x; will result in two pages
that are not overfull (since the number of points or regions in page
need only be decreased by one to avoid overfiow, it is easy to see that

~ this is always possible). Sblitpagealonox,.wmhftmddqhtm
witth.IonIDlndﬂghtlD i

Is. npcgcwuﬂ\erootplm.goto(la). Omombc.lotmébem
parent page of page (this parent page was found during the exact
match query step above). Replace (region, old /D) in page
with (Jeft region, left ID) and (right region, right ID), where left region
and right region are obtained by splitting region slong x,. If this causes
page to overfiow, repeat from (14); otherwise terminate.

=
"
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16. Create a noew region page containing the regions
(domaing x ... x [-90,,x) x ... xdomain, ,,lettID),
(domaing x ... X fx;,90,)x ... xdomain,_, ,right D),
and set root /D to its ID.

Variations of the above aigorithm result from the way domain, and x, are chosen in (14). One
way of choosing domain; is to do so cyclically, as follows. Store in each page a variable
splitting domain, initialized to 0 in a root page when a new root page is created. When a
page splits, an element of domain, ;.. gomein 18 Used, and the new pages have splitting
domain set to (splitting domain + 1) MOD K. This method is analagous to the cyclic choice
of domains in K-D-trees (see [Bentley 75]). Exceptions to this procedure, as well as other
techniques for choosing domain, and x, are discussed in [Robinson 81].

Since the K-D-B-tree structure does not preclude empty point pages, and has no minimum
storage utilization requirements, the basic deletion algorithm is very simple: find the index
record (point, record ID) with an exact match qusry, and remove (point, record /D) from the
point page.

Unless there are very few deletions, or by chance insertions take place that “fill in the holes"
left by deletions, this basic deletion algorithm will be unacceplable due to the resulting low
storage utilization. In B-tree algorithms, this problem is solved by what are here considered
to be reorganization techniques. This reorganization takes place by redistributing index
records among two or more adjacent sibling pages. The same type of reorganization can be
performed on K-D-B-trees, providing the notion of adjacency can be generalized to more
than one dimension.

One way to generalize adjacency is as follows: if the union of two or more regions is a
region, the regions are said to be joinable. Using this property, an outline of the algorithm to
"reorganize page P" is as follows (P could be an underfull point page produced by a
deletion, or an underfull region page produced by previous reorganization).

1. Let page be the parent page of P, containing (region, /D), where ID refers
.o P

2. Find (region,, ID,), {region,, iDy), .... in page such that region, region,,
region,, ..., are joinable (this is always possibie -- in the worst case, this will
be all the regions of page).

3. Catenate the pages with iDs /D, /D,, ID,, ..., and then repeatedly spiit this
page and resulting pages untii no page is overfull.

4. Replace (region, /D), (region,, ID,), (regiong, IDy), ..., in page with the
resulting new regions and page iDs.
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5. If page is the root page, and it now contains only one pair (region, ID),
delete page and set root ID to ID.

Another possible use of reorganization is during insertions, since step (S3) can leave empty
or near-empty point pages. This should probably be done only at the point page level, since
reorganization itself makes use of step (S3) when performed at higher levels. However,
almost all pages are point pages (see the table below). Reorganization strategies for K-D-B-
trees, and the performance of K-D-B-trees under reorganization, are subjects of current
research. .

A major difference between K-D-B-trees and B-trees with respect to insertions is step (S3),
which forces pages at lower levels to split even though they are not overfull. An immediate
question is how badly step (S3) affects performance, in terms of storage utilization and page
accesses. Surprisingly, the performance of K-D-B-trees is quite good in spite of step (S3),
even without reorganization. Table B shows the insertion characteristics of 2-D-B-
trees and 3-D-B-trees, without reorganization, and with index records randomly generated,
uniformly distributed in K-space. Details of these and other experiments appear in [Robinson
81).

Including various secondary indexes, as desired, an example of the resulting file structure is
shown in Figure A2. A problem of future research is the optimal choice of multidimensional
secondary indexes, given some kind of characterization of the "average™ query.

PAGE PAGES AT EACH STORAGE  AGGESSED/
K sizeshr sizE Levet® © umiuzanon mseRTIONC
2 25,42 20000 1,2 40, 714 066 100,338
40000 1 4, 80,1468 0.85 1.00, 4.00
60000 1, 7,122, 2187 oes 1.18,4.00
80000 1, 9,165,2904 065 1.18,4.00
100000  1,12,200, 3082 0.84 118, 4.00
3 38,63 20,000 1, 20, 514 061 116,292
40000 1, 2, 45,1080 0.59 118,330
60000 1, 2, 63,1847 081 1.16, 401
80000 1, 4, 89,2004 0.60 1.16, 401
100000 1, 4,108, 2504 0.0 115, 4.00

A page sizes = R, P, where R is maximum number of regions in &
region page, P is maximum number of points in a point page.
B For example, 1, 20, 514" meens 1 page at level 1 (root pege), 30
pages at level 2, and 514 pages ai level 3 {point pages).
Pmneeuud s W,R, mwumm R is pages read,
Wov«ao.ooomm

Table B. Growing K-D-B-Trees
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File Descriptor Page

Record Type _
string name, .
integer floor, corridor, office

indexes

record I0 =¥

name ==}
tioor, corridor, office =3

(additional misc. information)

'

floor, corridor, office

record ID

Flrecord ID)

.. page 10 record ID

 E . (B

Figure A2. Example File Structure

By introducing record types that contain pointers to the descriptor pages of existing fles,
directories of files, etc., can be built, resuiting in . nierarchical structure like that of the

record manager used in the Cm* systom, for example.
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it might be thought that the introduction of new secondary indexes would require a
reorganization of the file, that is, a large transaction, but even this can be avoided, assuming
newly generated record IDs are monotonically increasing. With this assumption, one method
for solving the problem is as follows.

1. Create the new secondary index, and index every record inserted to the file
from this point on through this index, as usual. However, mark the index
as not being up to date, so that queries will avoid its use.

2. Let min ID and max ID be the minimum and maximum record ID in the file
at the time the new secondary index is created. Start a process that
repeatedly finds the next record ID in the file, from min /D to max 1D, and
that indexes each corresponding record in the new secondary index, with
each indexing operation implementsd as a separate transaction.

3. When this process terminates, mark the index as being up to date.

The deletion of an existing secondary index. does not cause significant concurrency
probilems, since once the pointer to the index is removed from the file descriptor page, all
future transactions or queries cannot access the index. The process of deleting all pages of
the secondary index can then be performed with transactions of a size chosen without
regard to confiicts.

This concludes the outline of a possible record manager.

R

i A ST T -




CONCURRENCY CONTROL ALGORITHMS

Appendix il. Concurrency COntroI‘ Algorithms

in this appendix concurrency control algorithms are presented. In order to make these
algorithms available to a wider audience, the Cm* CC subsystem was re-programmed in
Pascal, following the original Bliss implementation fairly ciosely. The intent of the Pascal
program below is to clearly show the logical nature of the algorithms, avoiding distracting
complexity. Thus, sets of object IDs are declared as Pascal sets, even though the usual bit-
vector representation would in practice be unacceptable (for example, 16-bit object 1Ds imply
bit-vactors of length 64K bits to represent object ID sets); in practice, theae sets would be
represented as linked lists or stacks of object IDs (a linked list representation was used in
the Cm* CC subsystem). Similarly, structures that are logically associatively accessed by
object 1D are declared as arrays indexed by object ID (these are RSet, RPSet, WSet, and
WPSet below); in practice, only information for object IDs that were currently in use would
be stored. In the Cm* CC subsystem, for example, information for any given object ID was
accessed through a hash table, entries of which pointed to a linked list of object ID records
with identical hash values. New object ID records were created as necessary, and when all
transaction processor sets in a particular object ID record bacame empty, the record was

deleted.
in order 1o test the Pascal implementation, terminai /0 was used in place of what had been
message sending and receiving, and a procedure to print transaction records was added.
All of this has been ieft intact, and as an aid to understanding the program, an example of
the execution of the program follows the program listing.

Note: the Pascal variant used was |BM's Pascal/VS; the only occurring differences fmm
Pascal as described in [Jensen and Wirth 74] are the "otherwise” construct in the procedure
that reads an input line, and the terminal I/O initialization procedures.

The program and exampie follow.
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(o-.----------.-----.-.- cm“cv comoL .-..‘-.-.0.0.--P’0.00000)

‘ program CC(input, output);

{ for illustrative purposes, transaction processors are named )
{ '1', '2', ..., '9', and objects are named ‘A', 'B', ..., '2'.}

const

MinTPID = '1'; MaxTPID = '9';
MinOID = 'A'; Max0ID = 'Z2';

(DR cesecscaces cemcoen TYPES -~-~-- cocmcesesaccacacencaaceaaa)

TPID = MinTPID .. MaxTPID; » { transaction processor ID }
0ID = MinOID .. MaxOID; { object ID }

TSet = sot of TPID; { transaction set }

OSet = set of 0ID; { object set }

AccType = (none, R, RW, W, V); { access types )}

DecType = (kill, wait, die, grant); { decisions }

{ SubOpType = (rdrs, wrtrs, all); { sub-options )
NEE
- StatType = (active, pending, { status }
ﬁ validated, aborted, completed);
! MsgType = (Cbegin, Cread, Cwrite, { messages }
Cend, Cvalid, Cabort, Cpolicy, Clook, Cquit);
TRec = record { transaction record }
status: StatType; { transaction status )
access: AccType; { type of most recent request }
ObjID: O1D; { obj. ID for most recent access request )
WaitCount: integer; { number of trans.'s being waited on }
PrecedeSet, { set of trans.'s -> this trans. }
VwaitSet, { this trans. =>V get of trans.'s }
CwaitSet, { this trans. =>C set of trans.'s }
; ReferSet: { set of trans.'s that refer in any )
| TSect; { fashion to this trans. }
: ObjSet: OSet { set of objects for which this trans. )
{ has requested access }

ond;




{-==eeveecmececacecaccccce GLOBAL VARIABLES ~=e--vecceecccacecaccseac)

TINC: integer;

RunSet: TSet;

CurrentTP: TPID;

trans: array[TPID] of TRec;

array[OID] of TSet;

transaction number counter )

set of runnable transactions )}
current transaction processor ID )
transaction records )}

read sets )}

read postponed sets )

write sets )

write postponed sets }

T Y ceeeeenee PM VARIABLES --=-ee-c-e- —emmee e

RWoption,

" LYo Yan K]

RWSubOption: SubOpType;

read option }
read/write option }
write option }
validation option }

read/write sub-option }
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{~-==cc-ecececccceccccecaces INITIALIZATION =c=ccccccenceee —-)

procedure init;

var tp: TPID; id: OID;

begin

TNC := );

RunSet := []; '

CurrentTP := MinTPID;

for tp := MinTPID to MaxTPID do

with trans[tp] do begin

status := completed;
access := none;
0b3jID := MinOID;
WaitCount := Q;
PrecedeSet := [];
VwaitSet := [];
CwaitSet := (];
ReferSet := [];
ObjSet := [}
end;

for id := MinOID to MaxOID do begin

; RSet[id] := [];
‘ RPSet{id] := [];
WSet[id] := [];
WPSet[id] := [] -
end '
end;

“u g e iehd
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{me-escmemcccnccccccce COMPUTE WAIT REIATION -ccocmecscmncencccccccce)
{ determine if trans. on tpl is waiting on trans. on tp2 )

function VaitingOn(tpl, tp2: TPID): boolean;
label 1{return);
var tp3: TPID;
begin
WaitingOn := false;
with trans{tp2] do begin .
if tpl in (VwaitSet + CwaitSet)
then VWsitingOn := true
eise for tp3 := MinTPID to MaxTPID do
if tp3 in (VwaitSet + CwaitSet)
then if WaitingOn(tpl, tp3)
then begin WaitingOn := true; goto 1{return) end

ond;
1:{return}

----- SET POLICY -----e-escemmeecaaccccccanas)

procedure PMpolicy(Rop, RWop, Wop, Vop: DecType; RWSubOp: SubOpType);

begin i
Roption := Rop; RWoption := RWop; Woption := Wop; Voption := Vop;

RWSubOption := RWSubOp;
if Voption = grant then Voption := kill { grant is an illegsl Vop )

end;

s
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{e-eemeeeemeccecemecicccccas POLICY MODULE ---cecceaccceciccocaccacaea)

{ The following function decides how to handle a request from )
{ transaction processor tp. ConflSet is the set of possibly }
{ conflicting transactions, and WaitSet and AbortSet will be )
)
}

{ set to the sets of transactions to wait on or abort. The
{ result of the funetion is the decision for tp.

function PMdecide(tp: TPID; ConflSet: TSet;
var WaitSet, AbortSet: TSet): DecTyps;

var
tpi: TPID; decision: DecType;
begin
with trans[tp] do begin
Case access
R: decision := Roption;
RW: decision := RWoption;
W: decision := Woption;
V: decision := Voption end;
if (access = RW) and ((RWoption = kill) or (RWoption = wait))
then case RWSubOption of
all: ;
rdrs: ConflSet := ConflSet-(WSet([ObjID]+WPSet{O0bjID]);
wr:fs: ConflSet := ConflSet*(WSet[ObjID]+WPSet{ObjID]})
end;
if decision = wait then begin { check if deadlock would result }
if access # V
then { in order tn allow queueing of requests )}
ConflSet := ConflSet -
((Vwait3et+CwaitSet) * RPSet[ObjID]);
for tpi := MinTPID to MaxTPID do
if tpi in ConflSet
then if WaitingOn(tpi, tp)
then decision := die { defsult victim is requestor }

end;
if ConflSet = [) then decision := grant;
WaitSet := []; AbortSet := (];
case decision of
grant: ;
kill: AbortSet := ConflSet;
wait: WaitSet := ConflSet;
die: :+ end
end;
PMdecide := decision
end;
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{eececcaccccnecaccaceccnce CC-TP COMMUNICATION =eececccecccccnnsanss)

{ the following two procedures would in practice }
{ each send a message to & transaction processor }

procedure SendResult(tp: TPID; result: boolean);
begin o,

write('sm=> Message to 'l'P s tp, " ')
if result then writeln('OK') else writeln('ABORT')

end;

procedurs SendIN(tp: TPID; tn: integer);
begin writeln('===> Message to TP', tp, ': OK, TN = ', tn:1) end;

{ the following procedure would in practice }
{ read a message from the CC input pipe. )
{ Example terminal input: )
{ g quit }
{ m begin transaction on TPl }
{ =r2B request for read access from TP2 for B )
{ pGGaGK change policy to optimistic method )

procedure GetMsg(var m: MsgType; var tp: TPID; var id: OID;
var Rop, RWop, Wop. Vop: DecType; var RWSubOp: SubOpType);

const MaxLnth = 6;
var line: array[l..MaxLnth) of char; i: 1..MaxLnth; bad: boolean;

procedure SetMsg(c: char);

begin case ¢ of
'b': m:=»Cbegin; 'r': m:=Cread; 'w': m:= Cwrite;
v': m:= Cvalid; 'e': m:=Cend; 'a': m:= Cabort;
p': m:= Cpolicy; 'l': m:= Clook; 'q': m:®Cquit;
otherwise bad:=true end end;
procedures SetTPID(c: char);
begin if (c 2 MinTPID) and (c < MaxTPID)
then tp:=c eise bad:=true end;
procedure SetOID(c: char);
begin if (c 2 MinOID) and (c S MaxOID)
then id:=c eise bad:=true end;
procedure SetOp(c: char; ver o: DecType);
begin case c of
'K': o:mkill; 'W': o:mwait; 'D': o:mdie; 'G': o:= gramt;
otherwise bad := true end end;
procedure SetSubOp(c: char; var so: SubOpType);
begin case ¢ of
'r': so:mrdrs; 'w': so:wyrtrs; ‘'a': so:mall;
otherwise bad := true eond end;




writeln(' (enter message)’);
read(line{1});
for i := 2 to MexLnth do
if eoln then line[i] := ' ' else resd(lins[i});
readln;
bad := false;
SetMsg(line[1])}
if not bad then begin
if m = Cpolicy
then begin
SetOp(line[2], Rop); SetOp(line{3), RWop);
SetSubOp(line[4], RWSubOp); SetOp(line(S], Wop);
SetOp(line{6], Vop) end
else if m ¥ Cquit
then begin

SetTPID(line(2]);
if (m=Cread) or (m=Cwrite) then SetOID(line{3]) ond

end;
if bad thnn writeln('(bad input, try agsin)')

until not bad;

if m = Cpolicy
then bogin
write('Policy change message: NEW POLICY = BT
for i := 2 to MaxLnth do write(' ', line(i]);
writeln end
olse if (m # Cquit) and (m # Clook)
then bogln
write('Message from TP', tp, ': ');
case m of
Cbegin: writeln('BEGIN' ), Cread: writeln('READ ',id);
Cwrite: writcln( 'WRITE ',id); Cvalid: writeln('VALIDATE');
Cend: writeln('END'); Cabort : writcla('am’) ond end

oise if m = Cquit
then writeln(' (exit)')

ond;
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{secemcccccmcecmcecncaccccs SCHEDULING =-=-vsesceccasceccccnannccenss)

{ have tpl wait on-tp2 )}

procedure schedule(tpl, tp2: TPID);
begin ’
with trans[tpl] do begin
if (access = R) or
((:‘;cess = RW) and (tp2 in (WSet[ObjID)+WPSet{ObjID])))
an
trans|[tp2].CwaitSet := trans[tp2].CwaitSet + {tpl]
else
trans[tp2].VwaitSet := trans([tp2].VwaitSet + [tpl];
WaitCount := WaitCount+l;
ReferSet := ReferSet + [tp2]
end
oend;

{ postpone transaction }

procedure postpone(tp: TPID);
begin
with trans{tp] do begin
if access =V
then status := pending
eise begin
if (access = R) or (access = RW)
~then RPSet{0bjID] := RPSet([ObjID] + [tp];
if (access’ = W) or (access = RW)
then WPSet[ObjID] := WPSet([ObjID] + [tp];
ObjSet := ObjSet + [ObjID]
end
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 CRR - ecececee MAINTAIN PRECEDE RELATION -+-c--cecesacececcecas )

procedure precede(tpl, tp2: TPID);
begin
with trans{tpl] do begin
if (access = R) or (access = RW)
then if tp2 in WSet[ObjID]
then begin
trans(tp2].PrecedeSet := trans[tp2].PrecedeSet + [tpl];
ReferSet := ReferSet + [tp2]
end;
if (access = W) or (access = RW)
then if tp2 in RSet[ObjID]
then begin
PrecedeSet := PrecedeSet + {tp2];
trans[tp2].ReferSet := trans{tp2).ReferSet + [tpl]
end
end
end;

T . GRANT A REQUEST ==vev=sceecccesececscaccens }

procedure GrantReq(tp: TPID);
begin
. with trans{tp] do begin
1 if (access = R) or (access = RW)
1 then begin
; ' RPSet[ObjID] := RPSet[ObjID] - [tp];
L S RSet[ObjID] := RSet[ObjID] + [tp]
: end;
- : : if (access = W) or (access = RW)
T then begin
? WPSet [ObjID] := “PSet{ObjID} - [tp];
| WSet[ObjID] := WSe.,0bjID] + [tp]
end;
ObjSet := ObjSet + [ObjID]
end;
SendResult(tp, true)
end;
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G T === ABORT A TRANSACTION =ceceececacacaccccaccass)

procedure abort(tp: TPID);
var tpi: TPID; id: OID;
begin
with trans[tp] do begin
status := shorted;
for tpi := MinTPID to MaxTPID do
begin
if tpi in (VwaitSet + CwaitSet)
then with trans{tpi] do begin
WaitCount := WaitCount-1;
if WaitCount = 0 then RunSet := RunSet + [tpi]
end;
if tpi in ReferSet then
with trans{tpi] do begin
PrecedeSet := PrecedeSet - {tp];
VwaitSet := VwaitSet - [tp);
CwaitSet := CwaitSet - [tp]
end
end; .
PrecedeSet := []; VwaitSet := []; CwaitSet := []; ReferSet := [};
WaitCount := 0;
for id := MinOID to MaxOID do
if id in ObjSet then
begin
RSet[id] := RSet(id]-(tp]; RPSet[id] := RPSet[id]-[tp]);
WSet[id) := WSet[id]-[tp]; WPSet[id] := WPSet[id]-{tp]
end;
ObjSet := []
end
end;

i
!
1
!
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{=neen- -eeceeccceacce VALIDATE A TRANSACTION --=-sccace-= ——veene R

procedure validate(tp: TPID);
var tpi: TPID; id: OID;
begin
with trans[tp] do begin
status := validated;
for tpi := MinTPID to MaxTPID do begin
if tpi in VwaitSet
then with trans[tpi) do begin
WaitCount := WaitCount-l;
if WaitCount = 0 then RunSet := RunSet + [tpi]
end;
if tpi in ReferSet
then with trans[tpi] do begin
PrecedeSet := PrecedeSet - [tp] end
end;
for id := MinOID to MaxOID do
if id in ObjSet
then RSet[id) := RSet[id] - [tp]
end;
SendTN(tp, TNC);
TNC := TNC+1
end;

{-memcemcmmccecananas COMPLETE A TRANSACTION --==--e=ecec-acecaaccm- }

procedure complete(tp: TPID);
var tpi: TPID; id: OID;
begin
with trans[tp) do begin
status := completed;
for tpi := MinTPID to MaxTPID do
if tpi in CwaitSet
then with trans{tpi] do begin
WaitCount := WaitCount-1;
if WaitCount = 0 then RunSet := RunSet + [tpi]
end;
PrecedeSet := (]; VwaitSet := {]; CwaitSet := []; ReferSet := [];
WaitCount := 0;
for id := MinOID to MaxOID do
if id in ObjSet
then WSet[id] := WSet[id] - [tp];
ObjSet := []
end
end;
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(seemseacescnsccencenans PROCESS A-sm—.&.‘.;‘.......-.'.;...;;;;;:g

procedure process(tp: TPID: ConflSet: TSet); ‘ viseieT]
::; decision: DecType; WaitSet, AbortSet: TSet; tpi' TPID' ’ :
‘n PRI T8

{ let the policy determine bow to process this request }
P decision := PMdecide(tp, ConflSet, WaitSet, AbortSet);

{ check if the policy decided to abort s velidated tramsaction, )}
{ or if the policy decided to grant the request even though there )}
{ was a validated conflicting transaction }
for tpi := MinTPID to MaxTPID do
if trans{tpi].status = validsted
then if
(tpi in AbortSet) or
( ((decision = grant) or (decfsion = kill)) and
(tpi in ConflSet) )
then begin decision := die; AbortSet := [] end;

{ abort transsctions in AbortSet )}
for tpi := MinTPID to MaxTPID do
if tpi in AbortSet then abort(tpi);

{ now process the request according to decision }
case decision of

die: begin abort(tp); SendResult(tp, false) ond;

wait: begin
- for tpi := MinTPID to MaxTPID do
-~ i if tpi in WaitSet then schedule(tp, tpi);
i FIR postpone(tp)
end;
| grant,

kill: if trans[tp).access = V
then validate(tp)
eise
begin
for tpi := MInTPID to MaxTPID do )
if tpi in ConflSet then precede(tp, tpi);
: GrantReq(tp)
[ end

4
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. end;
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{-~c-vmcomcecncoccccne- PROCESS CC. REQUESTS. ~-~vosrenmroreroccsccsess}

procedure Clprocess;
var ConflSet: TSet;

begin

{ repestedly process requests while RunSet is aon-npty }
while RunSet ¥ [] do begin

while ot (CurrentTP in RunSet) do
if (CurrentTP < MaxTPID)
then CurrentTP := succ(CurrentTP)
olse CurrentTP := MinTPID;

with trans[CurrentTP] do begin

{ determine set of possibly conflicting transactions )}
case access of
R: ConflSet := WSet[ObjID] + WPSet{ObjID];
RW: ConflSet := RSet{ObjID] + RPSet{ObjID] +
WSet[Ob)ID] + WPSet[Ob}ID];
W: ConflSet := RSet{ObjID] + RPSet[ObjID];
V: ConflSet := PrecedeSet end;

{ current transaction can't conflict with itself )
ConflSet := ConflSet - [CurrentTP);

{ now process the request }
if ConflSet = {]
then begin { process here to save some time }
if access = V
then validate(CurrentTP)
else GrantReq(CurrentTP)
end
else process(CurrentTP, ConflSet);

{ finished now with current transaction }
RunSet := RunSet - [CurrentTP)

ond
end
_end;
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{seesceseesecceccnecnoceecs CC PROCEDURES --e-se-scsscsesesoocsereces)

IINSE

’

{ Suppose it was desired to use s timestamp-based pgli.cy. ‘!‘h«a'“’f
{ transaction records could be extended to include 8 time fisld, 3"
to'the )

}

}

{ and "trans[tp].time := <current time>" could be ‘dllod
{ following procedurs. Similar modifications could be made for
{ any other policy based on information available a Mu

procedure CCbegin(tp: ‘rPID),
begin

trans[tp).status := active
end;

procedure CCvalid(tp: TPID);
begin
with trans[tp] do begin
if status = aborted
then SendResult(tp, false)
eise begin
access := V;
RunSet := RunSet + [tp];
CCprocess
end

end
end;

procedure CCend(tp: TPID);
begin

complete(tp);

CCprocess

end;

procedure CCabort(tp: TPID);
begin

sbort(tp);

CCprocess

end;
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b , pro:‘:‘un CCresd(tp: TPID; id: OID);
| with ¢z do begin
" n.:nl:’-lnbor?"

then SendResult(tp, false)
olse if tp in RBet(id]

“then SendResult(tp, true)
olse

begin

access := R;

ObjID := {d;

RunSet := RunSet + [tp);

CCprocess

ond

ond
ond;

pmdmuﬁ CCurite(tp: TPID; id: OID);
in
with trans(tp] do begin
i if status = aborted
then SendResult(tp, false)
olse If tp in WSet(id)
o then SendResult(tp, true)
0

begin
if tp in RSet[id)
then access := ¥
else access := RV;
ObjID := ID;
RunSet := RunSet + [tp);
CCprocess
ond

ond

‘s
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{ LOOK AT TRANBASTION 280000 3
precedure look(tp: TPID); : * vtz
| var i4: 0ID; ) L gy
procedure VriteTSet(s: TSet); |
var spi: TPID; S
begin
for tpi := MinTPID to MaxTPID do

i€ tpi In s then write(tpi)

[ ]
Vriteln('TRANSACTION ',tp);
with trans{tp] do begin

write(' Status: ');

case status Of sctive: writeln('sctive');

pending: writeln('pending’'); validated: writela('vslidsted');
aborted: writela('aborted’'); completed: writeln('ocempleted’) ond;

vrite(’ Access: ');
1 case sccess of none: writeln('smone’); R: writela('R');
' M: writeln('BV');: W: writela('¥W'); V: writela('V') end;
| wziteln(' Object ID: ', ObJID);

writeln(' WaitCownt: ', VeitCount:1);

write(' Precedelet: '); VriteTSet(Precedelet); writela;

write(' VwaitSet: '); VUriteTSet(VweitSet); writela;
write(' OwaitSet: '); VrziteTSet(CwaitSet); writels;

1 N write(' RefarSet: '); VriteTSet(ReferSet); writels;
* write(' ObjSec: ‘);
for 14 := MiROID % NaxOID do
‘ i 14 In ObjSet then write(id);
“ . writela
ond

: ond;
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(V) m-mmm
| ( «> canonice G0 SRIVER cosnsnore anaaw)
‘ presedure driver: PR JPy e
? ver a: Maglyps; tp: TPID; id: OID; , “
} Bep, Miop, » Yop: DecType; MiBubOp: SubOpType;
repest )
m‘.' ”. “0 h' “. h. hl M)%

Chegia: CChegin(tp);

Cread: CCresd(ty, id);

Curite: COwrite(tp, id);

Cvelid: CCvalid(tp);

Cend: Clend(tp);

Cabort: CCabort(tsp);

Cpolicy: Pipolicy(Rop, Wicp, Vop, Vop, BiSubOp);
Clook: leok(tp):

T |

=
unth & = Cquit
ond;

(-~ PROGRAN BODY -)
::?u(un:); termout (output); { initialise terminel {/0 )
Mipolicy(weit ,wait . wait wait, all); ( dafenlt to loockiag )
::uh('(‘duk locking policy is effect)’);

ver

ond .
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Objest ID: A
VeisCount: O
Prosedelet: 3
Yuaislet: .
Owaitet:
Referfet: 2
bjset: AC

suu wsssege)

Nsssage fres T92: VALINATE
= Hessage to TP2: 0K, ™ @ 7
(enter 8s880ge)

3

Wassage frem TP3: VALIDATE

w Hessage teo TPI: ABCRT
‘rucm’

v

Message fres TP1: VALINMTE

s Nessege 1o TP1: OX, TX © 8
(emter ssssage)

[} ]
Nessage fres T91: DO
(enter msssage)

o2
Nessage fven TN2: 5O
(enter sessage)

9
(enis)
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